5 #include "caffe2/core/context.h"     6 #include "caffe2/core/operator.h"     7 #include "caffe2/utils/math.h"    10 template <
typename F, 
typename T, 
class Context>
    13   USE_OPERATOR_CONTEXT_FUNCTIONS;
    15   template <
class... Args>
    18         col_ids_(this->
template GetRepeatedArgument<int>(
"col_ids")),
    20             this->
template GetRepeatedArgument<int>(
"categorical_limits")),
    21         vals_(this->
template GetRepeatedArgument<int>(
"vals")) {
    22     col_num_ = col_ids_.size();
    23     max_col_id_ = *std::max_element(col_ids_.begin(), col_ids_.end());
    24     CAFFE_ENFORCE_EQ(col_num_, categorical_limits_.size());
    25     int expected_vals_size = 0;
    26     for (
auto& l : categorical_limits_) {
    27       CAFFE_ENFORCE_GT(l, 0);
    28       expected_vals_size += l;
    30     CAFFE_ENFORCE_EQ(expected_vals_size, vals_.size());
    32     for (
auto& j : col_ids_) {
    33       CAFFE_ENFORCE_GE(j, 0);
    34       ngram_maps_.push_back(std::map<int, int>());
    38     for (
int k = 0; k < col_num_; k++) {
    39       int l = categorical_limits_[k];
    40       for (
int m = 0; m < l; m++) {
    42         ngram_maps_[k][v] = m * base;
    48   bool RunOnDevice()
 override {
    49     auto& floats = 
Input(0);
    50     auto N = floats.size(0);
    51     auto D = floats.size_from_dim(1);
    52     const F* floats_data = floats.template data<F>();
    54     auto* output = Output(0, {N}, at::dtype<T>());
    55     auto* output_data = output->template mutable_data<T>();
    56     math::Set<T, Context>(output->numel(), 0, output_data, &context_);
    58     CAFFE_ENFORCE_GT(
D, max_col_id_);
    59     for (
int i = 0; i < N; i++) {
    60       for (
int k = 0; k < col_num_; k++) {
    62         int v = round(floats_data[i * 
D + j]);
    67         output_data[i] += ngram_maps_[k].find(v) == ngram_maps_[k].end()
    76   std::vector<int> col_ids_;
    77   std::vector<int> categorical_limits_;
    78   std::vector<int> vals_;
    79   std::vector<std::map<int, int>> ngram_maps_;
 const Tensor & Input(int idx, DeviceType type=Context::GetDeviceType())
Retrieve a non-owning reference to the input at position 'idx' for this operator. ...
 
A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...