3 from __future__ 
import absolute_import
     4 from __future__ 
import division
     5 from __future__ 
import print_function
     6 from __future__ 
import unicode_literals
    15     def __init__(self, model, input_record, bias_init=None,
    16                  bias_optim=
None, name=
'add_bias'):
    17         super(AddBias, self).__init__(model, name, input_record)
    18         assert isinstance(input_record, 
schema.Scalar), 
"Incorrect input type"    19         assert len(input_record.field_type().shape) > 0, (
    20             "AddBias expects limited dimensions of the input tensor")
    22         input_dims = input_record.field_type().shape[0]
    23         assert input_dims > 0, (
    24             "AddBias expects input dimensions > 0, got {}".format(input_dims))
    26         scale = math.sqrt(1.0 / input_dims)
    27         bias_init = bias_init 
if bias_init 
else (
    28             'UniformFill', {
'min': -scale, 
'max': scale})
    33             initializer=bias_init,
    38             (input_record.field_type().base, (input_dims, )),
    42     def add_ops(self, net):
    43         net.Add(self.input_record.field_blobs() + [self.
b],
    44                 self.output_schema.field_blobs(), broadcast=1)
 
def get_next_blob_reference(self, name)
 
def create_param(self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None)