1 from __future__ 
import absolute_import
     2 from __future__ 
import division
     3 from __future__ 
import print_function
     4 from __future__ 
import unicode_literals
    17         name=
'batch_normalization',
    24         super(BatchNormalization, self).__init__(
    25             model, name, input_record, **kwargs)
    27         assert isinstance(input_record, 
schema.Scalar), 
"Incorrect input type"    37                 raise ValueError(
"Please specify a correct order")
    40                 "This layer supports only 4D or 2D tesnors")
    53                                        initializer=(
'ConstantFill', {
'value': 1.0}),
    54                                        optimizer=scale_optim)
    57                                        initializer=(
'ConstantFill', {
'value': 0.0}),
    61                                        initializer=(
'ConstantFill', {
'value': 0.0}),
    62                                        optimizer=model.NoOptim)
    65                                        initializer=(
'ConstantFill', {
'value': 1.0}),
    66                                        optimizer=model.NoOptim)
    68     def _add_ops(self, net, is_test, out_blob=None):
    69         original_input_blob = self.input_record.field_blobs()
    70         input_blob = net.NextScopedBlob(
'expand_input')
    72             input_blob = net.ExpandDims(original_input_blob,
    75             input_blob = original_input_blob[0]
    78             bn_output = self.output_schema.field_blobs()
    82             output_blobs = bn_output
    84             output_blobs = bn_output + [self.
rm, self.
riv,
    85                                         net.NextScopedBlob(
'bn_saved_mean'),
    86                                         net.NextScopedBlob(
'bn_saved_iv')]
    88         net.SpatialBN([input_blob, self.
scale,
    96             net.Squeeze(bn_output,
   100     def add_train_ops(self, net):
   103     def add_eval_ops(self, net):
   106     def add_ops(self, net):
 
def get_next_blob_reference(self, name)
def add_eval_ops(self, net)
def create_param(self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None)
def _add_ops(self, net, is_test, out_blob=None)