Public Attributes | |
| enabled | |
| use_cuda | |
| function_events | |
| entered | |
Context manager that manages autograd profiler state and holds a summary of results.
Arguments:
enabled (bool, optional): Setting this to False makes this context manager a no-op.
Default: ``True``.
use_cuda (bool, optional): Enables timing of CUDA events as well using the cudaEvent API.
Adds approximately 4us of overhead to each tensor operation.
Default: ``False``
.. warning:
This context managers should not be called recursively, i.e. at most one
instance should be enabled at any given time.
Example:
>>> x = torch.randn((1, 1), requires_grad=True)
>>> with torch.autograd.profiler.profile() as prof:
... y = x ** 2
... y.backward()
>>> # NOTE: some columns were removed for brevity
... print(prof)
------------------------------------- --------------- ---------------
Name CPU time CUDA time
------------------------------------- --------------- ---------------
PowConstant 142.036us 0.000us
N5torch8autograd9GraphRootE 63.524us 0.000us
PowConstantBackward 184.228us 0.000us
MulConstant 50.288us 0.000us
PowConstant 28.439us 0.000us
Mul 20.154us 0.000us
N5torch8autograd14AccumulateGradE 13.790us 0.000us
N5torch8autograd5CloneE 4.088us 0.000us
Definition at line 129 of file profiler.py.
1.8.11