Public Member Functions | |
| def | __init__ (self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)) |
| def | step (self, closure=None) |
Implements the resilient backpropagation algorithm.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that
are multiplicative increase and decrease factors
(default: (0.5, 1.2))
step_sizes (Tuple[float, float], optional): a pair of minimal and
maximal allowed step sizes (default: (1e-6, 50))
| def torch.optim.rprop.Rprop.step | ( | self, | |
closure = None |
|||
| ) |
1.8.11