1 from .module 
import Module
     2 from .utils 
import _pair, _quadruple, _ntuple
     3 from .. 
import functional 
as F
     4 from ..._jit_internal 
import weak_module, weak_script_method
    12     __constants__ = [
'padding', 
'value']
    14     def __init__(self, value):
    15         super(_ConstantPadNd, self).__init__()
    19     def forward(self, input):
    20         return F.pad(input, self.padding, 
'constant', self.
value)
    23         return 'padding={}, value={}'.format(self.padding, self.
value)
    28     r"""Pads the input tensor boundaries with a constant value.    30     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.    33         padding (int, tuple): the size of the padding. If is `int`, uses the same    34             padding in both boundaries. If a 2-`tuple`, uses    35             (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)    38         - Input: :math:`(N, C, W_{in})`    39         - Output: :math:`(N, C, W_{out})` where    41           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`    45         >>> m = nn.ConstantPad1d(2, 3.5)    46         >>> input = torch.randn(1, 2, 4)    48         tensor([[[-1.0491, -0.7152, -0.0749,  0.8530],    49                  [-1.3287,  1.8966,  0.1466, -0.2771]]])    51         tensor([[[ 3.5000,  3.5000, -1.0491, -0.7152, -0.0749,  0.8530,  3.5000,    53                  [ 3.5000,  3.5000, -1.3287,  1.8966,  0.1466, -0.2771,  3.5000,    55         >>> m = nn.ConstantPad1d(2, 3.5)    56         >>> input = torch.randn(1, 2, 3)    58         tensor([[[ 1.6616,  1.4523, -1.1255],    59                  [-3.6372,  0.1182, -1.8652]]])    61         tensor([[[ 3.5000,  3.5000,  1.6616,  1.4523, -1.1255,  3.5000,  3.5000],    62                  [ 3.5000,  3.5000, -3.6372,  0.1182, -1.8652,  3.5000,  3.5000]]])    63         >>> # using different paddings for different sides    64         >>> m = nn.ConstantPad1d((3, 1), 3.5)    66         tensor([[[ 3.5000,  3.5000,  3.5000,  1.6616,  1.4523, -1.1255,  3.5000],    67                  [ 3.5000,  3.5000,  3.5000, -3.6372,  0.1182, -1.8652,  3.5000]]])    71     def __init__(self, padding, value):
    72         super(ConstantPad1d, self).__init__(value)
    78     r"""Pads the input tensor boundaries with a constant value.    80     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.    83         padding (int, tuple): the size of the padding. If is `int`, uses the same    84             padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,    85             :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)    88         - Input: :math:`(N, C, H_{in}, W_{in})`    89         - Output: :math:`(N, C, H_{out}, W_{out})` where    91           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`    93           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`    97         >>> m = nn.ConstantPad2d(2, 3.5)    98         >>> input = torch.randn(1, 2, 2)   100         tensor([[[ 1.6585,  0.4320],   101                  [-0.8701, -0.4649]]])   103         tensor([[[ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],   104                  [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],   105                  [ 3.5000,  3.5000,  1.6585,  0.4320,  3.5000,  3.5000],   106                  [ 3.5000,  3.5000, -0.8701, -0.4649,  3.5000,  3.5000],   107                  [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000],   108                  [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000,  3.5000]]])   109         >>> # using different paddings for different sides   110         >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)   112         tensor([[[ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000],   113                  [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000],   114                  [ 3.5000,  3.5000,  3.5000,  1.6585,  0.4320],   115                  [ 3.5000,  3.5000,  3.5000, -0.8701, -0.4649],   116                  [ 3.5000,  3.5000,  3.5000,  3.5000,  3.5000]]])   119     __constants__ = [
'padding', 
'value']
   121     def __init__(self, padding, value):
   122         super(ConstantPad2d, self).__init__(value)
   123         self.
padding = _quadruple(padding)
   128     r"""Pads the input tensor boundaries with a constant value.   130     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   133         padding (int, tuple): the size of the padding. If is `int`, uses the same   134             padding in all boundaries. If a 6-`tuple`, uses   135             (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,   136             :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,   137             :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)   140         - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`   141         - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where   143           :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`   145           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`   147           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   151         >>> m = nn.ConstantPad3d(3, 3.5)   152         >>> input = torch.randn(16, 3, 10, 20, 30)   153         >>> output = m(input)   154         >>> # using different paddings for different sides   155         >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)   156         >>> output = m(input)   160     def __init__(self, padding, value):
   161         super(ConstantPad3d, self).__init__(value)
   162         self.
padding = _ntuple(6)(padding)
   167     __constants__ = [
'padding']
   170     def forward(self, input):
   171         return F.pad(input, self.padding, 
'reflect')
   173     def extra_repr(self):
   174         return '{}'.format(self.padding)
   179     r"""Pads the input tensor using the reflection of the input boundary.   181     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   184         padding (int, tuple): the size of the padding. If is `int`, uses the same   185             padding in all boundaries. If a 2-`tuple`, uses   186             (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)   189         - Input: :math:`(N, C, W_{in})`   190         - Output: :math:`(N, C, W_{out})` where   192           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   196         >>> m = nn.ReflectionPad1d(2)   197         >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)   199         tensor([[[0., 1., 2., 3.],   202         tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],   203                  [6., 5., 4., 5., 6., 7., 6., 5.]]])   204         >>> # using different paddings for different sides   205         >>> m = nn.ReflectionPad1d((3, 1))   207         tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],   208                  [7., 6., 5., 4., 5., 6., 7., 6.]]])   212     def __init__(self, padding):
   213         super(ReflectionPad1d, self).__init__()
   219     r"""Pads the input tensor using the reflection of the input boundary.   221     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   224         padding (int, tuple): the size of the padding. If is `int`, uses the same   225             padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,   226             :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)   229         - Input: :math:`(N, C, H_{in}, W_{in})`   230         - Output: :math:`(N, C, H_{out}, W_{out})` where   232           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`   234           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   238         >>> m = nn.ReflectionPad2d(2)   239         >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)   241         tensor([[[[0., 1., 2.],   245         tensor([[[[8., 7., 6., 7., 8., 7., 6.],   246                   [5., 4., 3., 4., 5., 4., 3.],   247                   [2., 1., 0., 1., 2., 1., 0.],   248                   [5., 4., 3., 4., 5., 4., 3.],   249                   [8., 7., 6., 7., 8., 7., 6.],   250                   [5., 4., 3., 4., 5., 4., 3.],   251                   [2., 1., 0., 1., 2., 1., 0.]]]])   252         >>> # using different paddings for different sides   253         >>> m = nn.ReflectionPad2d((1, 1, 2, 0))   255         tensor([[[[7., 6., 7., 8., 7.],   256                   [4., 3., 4., 5., 4.],   257                   [1., 0., 1., 2., 1.],   258                   [4., 3., 4., 5., 4.],   259                   [7., 6., 7., 8., 7.]]]])   263     def __init__(self, padding):
   264         super(ReflectionPad2d, self).__init__()
   265         self.
padding = _quadruple(padding)
   270     __constants__ = [
'padding']
   273     def forward(self, input):
   274         return F.pad(input, self.padding, 
'replicate')
   276     def extra_repr(self):
   277         return '{}'.format(self.padding)
   282     r"""Pads the input tensor using replication of the input boundary.   284     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   287         padding (int, tuple): the size of the padding. If is `int`, uses the same   288             padding in all boundaries. If a 2-`tuple`, uses   289             (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)   292         - Input: :math:`(N, C, W_{in})`   293         - Output: :math:`(N, C, W_{out})` where   295           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   299         >>> m = nn.ReplicationPad1d(2)   300         >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)   302         tensor([[[0., 1., 2., 3.],   305         tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],   306                  [4., 4., 4., 5., 6., 7., 7., 7.]]])   307         >>> # using different paddings for different sides   308         >>> m = nn.ReplicationPad1d((3, 1))   310         tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],   311                  [4., 4., 4., 4., 5., 6., 7., 7.]]])   315     def __init__(self, padding):
   316         super(ReplicationPad1d, self).__init__()
   322     r"""Pads the input tensor using replication of the input boundary.   324     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   327         padding (int, tuple): the size of the padding. If is `int`, uses the same   328             padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,   329             :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)   332         - Input: :math:`(N, C, H_{in}, W_{in})`   333         - Output: :math:`(N, C, H_{out}, W_{out})` where   335           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`   337           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   341         >>> m = nn.ReplicationPad2d(2)   342         >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)   344         tensor([[[[0., 1., 2.],   348         tensor([[[[0., 0., 0., 1., 2., 2., 2.],   349                   [0., 0., 0., 1., 2., 2., 2.],   350                   [0., 0., 0., 1., 2., 2., 2.],   351                   [3., 3., 3., 4., 5., 5., 5.],   352                   [6., 6., 6., 7., 8., 8., 8.],   353                   [6., 6., 6., 7., 8., 8., 8.],   354                   [6., 6., 6., 7., 8., 8., 8.]]]])   355         >>> # using different paddings for different sides   356         >>> m = nn.ReplicationPad2d((1, 1, 2, 0))   358         tensor([[[[0., 0., 1., 2., 2.],   359                   [0., 0., 1., 2., 2.],   360                   [0., 0., 1., 2., 2.],   361                   [3., 3., 4., 5., 5.],   362                   [6., 6., 7., 8., 8.]]]])   366     def __init__(self, padding):
   367         super(ReplicationPad2d, self).__init__()
   368         self.
padding = _quadruple(padding)
   373     r"""Pads the input tensor using replication of the input boundary.   375     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   378         padding (int, tuple): the size of the padding. If is `int`, uses the same   379             padding in all boundaries. If a 6-`tuple`, uses   380             (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,   381             :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,   382             :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)   385         - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`   386         - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where   388           :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`   390           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`   392           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   396         >>> m = nn.ReplicationPad3d(3)   397         >>> input = torch.randn(16, 3, 8, 320, 480)   398         >>> output = m(input)   399         >>> # using different paddings for different sides   400         >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))   401         >>> output = m(input)   405     def __init__(self, padding):
   406         super(ReplicationPad3d, self).__init__()
   407         self.
padding = _ntuple(6)(padding)
   412     r"""Pads the input tensor boundaries with zero.   414     For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.   417         padding (int, tuple): the size of the padding. If is `int`, uses the same   418             padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,   419             :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)   422         - Input: :math:`(N, C, H_{in}, W_{in})`   423         - Output: :math:`(N, C, H_{out}, W_{out})` where   425           :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`   427           :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`   431         >>> m = nn.ZeroPad2d(2)   432         >>> input = torch.randn(1, 1, 3, 3)   434         tensor([[[[-0.1678, -0.4418,  1.9466],   435                   [ 0.9604, -0.4219, -0.5241],   436                   [-0.9162, -0.5436, -0.6446]]]])   438         tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],   439                   [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],   440                   [ 0.0000,  0.0000, -0.1678, -0.4418,  1.9466,  0.0000,  0.0000],   441                   [ 0.0000,  0.0000,  0.9604, -0.4219, -0.5241,  0.0000,  0.0000],   442                   [ 0.0000,  0.0000, -0.9162, -0.5436, -0.6446,  0.0000,  0.0000],   443                   [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000],   444                   [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000]]]])   445         >>> # using different paddings for different sides   446         >>> m = nn.ZeroPad2d((1, 1, 2, 0))   448         tensor([[[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],   449                   [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],   450                   [ 0.0000, -0.1678, -0.4418,  1.9466,  0.0000],   451                   [ 0.0000,  0.9604, -0.4219, -0.5241,  0.0000],   452                   [ 0.0000, -0.9162, -0.5436, -0.6446,  0.0000]]]])   456     def __init__(self, padding):
   457         super(ZeroPad2d, self).__init__(padding, 0.)