Caffe2 - C++ API
A deep learning, cross platform ML framework
im2col.h
1 #ifndef THCUNN_IM2COL_H
2 #define THCUNN_IM2COL_H
3 
4 #include <THCUNN/common.h>
5 #include <THC/THCNumerics.cuh>
6 #include <c10/macros/Macros.h>
7 
8 // Kernel for fast unfold+copy
9 // (borrowed from Caffe: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu)
10 template <typename Dtype>
11 C10_LAUNCH_BOUNDS_1(CUDA_NUM_THREADS)
12 __global__ void im2col_kernel(const int64_t n, const Dtype* data_im,
13  const int64_t height, const int64_t width,
14  const int64_t ksize_h, const int64_t ksize_w,
15  const int64_t pad_h, const int64_t pad_w,
16  const int64_t stride_h, const int64_t stride_w,
17  const int64_t dilation_h, const int64_t dilation_w,
18  const int64_t height_col, const int64_t width_col,
19  Dtype* data_col) {
20  CUDA_KERNEL_LOOP(index, n) {
21  int64_t w_out = index % width_col;
22  index /= width_col;
23  int64_t h_out = index % height_col;
24  int64_t channel_in = index / height_col;
25  int64_t channel_out = channel_in * ksize_h * ksize_w;
26  int64_t h_in = h_out * stride_h - pad_h;
27  int64_t w_in = w_out * stride_w - pad_w;
28  data_col += (channel_out * height_col + h_out) * width_col + w_out;
29  data_im += (channel_in * height + h_in) * width + w_in;
30  for (int64_t i = 0; i < ksize_h; ++i) {
31  for (int64_t j = 0; j < ksize_w; ++j) {
32  int64_t h = h_in + i * dilation_h;
33  int64_t w = w_in + j * dilation_w;
34  *data_col = (h >= 0 && w >= 0 && h < height && w < width) ?
35  data_im[i * dilation_h * width + j * dilation_w] : ScalarConvert<int, Dtype>::to(0);
36  data_col += height_col * width_col;
37  }
38  }
39  }
40 }
41 
42 template <typename Dtype>
43 void im2col(cudaStream_t stream, const Dtype* data_im, const int64_t channels,
44  const int64_t height, const int64_t width,
45  const int64_t height_col, const int64_t width_col,
46  const int64_t ksize_h, const int64_t ksize_w, const int64_t pad_h,
47  const int64_t pad_w, const int64_t stride_h, const int64_t stride_w,
48  const int64_t dilation_h, const int64_t dilation_w, Dtype* data_col) {
49  // We are going to launch channels * height_col * width_col kernels, each
50  // kernel responsible for copying a single-channel grid.
51  int64_t num_kernels = channels * height_col * width_col;
52  // Launch
53  im2col_kernel <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>> (
54  num_kernels, data_im, height, width, ksize_h, ksize_w,
55  pad_h, pad_w, stride_h, stride_w,
56  dilation_h, dilation_w,
57  height_col, width_col, data_col
58  );
59  THCudaCheck(cudaGetLastError());
60 }
61 
62 template <typename Dtype, typename Acctype>
63 C10_LAUNCH_BOUNDS_1(CUDA_NUM_THREADS)
64 __global__ void col2im_kernel(const int64_t n, const Dtype* data_col,
65  const int64_t height, const int64_t width, const int64_t channels,
66  const int64_t kernel_h, const int64_t kernel_w,
67  const int64_t pad_h, const int64_t pad_w,
68  const int64_t stride_h, const int64_t stride_w,
69  const int64_t dilation_h, const int64_t dilation_w,
70  const int64_t height_col, const int64_t width_col,
71  Dtype* data_im) {
72  CUDA_KERNEL_LOOP(index, n) {
73  Acctype val = Acctype(0);
74  const int64_t w_im = index % width + pad_w;
75  const int64_t h_im = (index / width) % height + pad_h;
76  const int64_t c_im = index / (width * height);
77  int64_t kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
78  int64_t kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
79  // compute the start and end of the output
80  const int64_t w_col_start =
81  (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
82  const int64_t w_col_end = min(w_im / stride_w + 1, width_col);
83  const int64_t h_col_start =
84  (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
85  const int64_t h_col_end = min(h_im / stride_h + 1, height_col);
86  // TODO: use LCM of stride and dilation to avoid unnecessary loops
87  for (int64_t h_col = h_col_start; h_col < h_col_end; h_col += 1) {
88  for (int64_t w_col = w_col_start; w_col < w_col_end; w_col += 1) {
89  int64_t h_k = (h_im - h_col * stride_h);
90  int64_t w_k = (w_im - w_col * stride_w);
91  if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
92  h_k /= dilation_h;
93  w_k /= dilation_w;
94  int64_t data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *
95  height_col + h_col) * width_col + w_col;
96  val += data_col[data_col_index];
97  }
98  }
99  }
100  data_im[index] = ScalarConvert<Acctype, Dtype>::to(val);
101  }
102 }
103 
104 
105 template <typename Dtype, typename Acctype>
106 void col2im(cudaStream_t stream, const Dtype* data_col, const int64_t channels,
107  const int64_t height, const int64_t width,
108  const int64_t output_height, const int64_t output_width,
109  const int64_t patch_h, const int64_t patch_w, const int64_t pad_h,
110  const int64_t pad_w, const int64_t stride_h, const int64_t stride_w,
111  const int64_t dilation_h, const int64_t dilation_w, Dtype* data_im) {
112  int64_t num_kernels = channels * height * width;
113  // To avoid involving atomic operations, we will launch one kernel per
114  // bottom dimension, and then in the kernel add up the top dimensions.
115  col2im_kernel<Dtype, Acctype> <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>> (
116  num_kernels, data_col, height, width, channels,
117  patch_h, patch_w, pad_h, pad_w, stride_h, stride_w,
118  dilation_h, dilation_w,
119  output_height, output_width, data_im
120  );
121  THCudaCheck(cudaGetLastError());
122 }
123 
124 #endif