__init__(self, num_embeddings, embedding_dim, max_norm=None, norm_type=2., scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None) (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
embedding_dim (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
extra_repr(self) (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
forward(self, input, offsets=None) (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
from_pretrained(cls, embeddings, freeze=True, max_norm=None, norm_type=2., scale_grad_by_freq=False, mode='mean', sparse=False) (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
max_norm (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
mode (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
norm_type (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
num_embeddings (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
reset_parameters(self) (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
scale_grad_by_freq (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
sparse (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |
weight (defined in torch.nn.modules.sparse.EmbeddingBag) | torch.nn.modules.sparse.EmbeddingBag | |