| DropoutCell (caffe2.python.rnn_cell) | MarginRankingLoss (torch.nn.modules.loss) | RNNCell (caffe2.python.rnn_cell) | THNNCudaBackendStateMixin (torch._thnn) | ||
DropoutDescriptor (torch.backends.cudnn) | MarginRankLoss (caffe2.python.layers.margin_rank_loss) | RNNCell (torch.nn.modules.rnn) | THNNFunctionBackend (torch.nn.backends.thnn) | |||
AbsTransform (torch.distributions.transforms) |
| Markdown (caffe2.python.docs.formatter) | RNNCellBase (torch.nn.modules.rnn) | Threshold (torch.nn.modules.activation) | ||
Adadelta (torch.optim.adadelta) | MaxNorm (caffe2.python.regularizer) | RNNDescriptor (torch.backends.cudnn) | TopLevelTracedModule (torch.jit) | |||
AdadeltaOptimizer (caffe2.python.optimizer) | EditHistory (expecttest) | MaxPool1d (torch.nn.modules.pooling) | RNNModel (model_defs.word_language_model) | TracedModule (torch.jit) | ||
Adagrad (torch.optim.adagrad) | ELU (torch.nn.modules.activation) | MaxPool2d (torch.nn.modules.pooling) | RnnModelWithPackedSequence (model_defs.rnn_model_with_packed_sequence) | TracerWarning (torch.jit) | ||
AdagradOptimizer (caffe2.python.optimizer) | Embedding (torch.nn.modules.sparse) | MaxPool3d (torch.nn.modules.pooling) | Rprop (torch.optim.rprop) | TracingCheckError (torch.jit) | ||
Adam (torch.optim.adam) | EmbeddingBag (torch.nn._functions.thnn.sparse) | MaxUnpool1d (torch.nn.modules.pooling) | RReLU (torch.nn.modules.activation) | Transform (torch.distributions.transforms) | ||
Adamax (torch.optim.adamax) | EmbeddingBag (torch.nn.modules.sparse) | MaxUnpool2d (torch.nn.modules.pooling) |
| TransformedDistribution (torch.distributions.transformed_distribution) | ||
AdamOptimizer (caffe2.python.optimizer) | EnforceUnique (torch.autograd.profiler) | MaxUnpool3d (torch.nn.modules.pooling) | Transformer (caffe2.python.transformations) | |||
AdaptiveAvgPool1d (torch.nn.modules.pooling) | ErrorDataset (test_dataloader) | MergeIdLists (caffe2.python.layers.merge_id_lists) | Sampler (torch.utils.data.sampler) | TranslatorRegistry (caffe2.python.caffe_translator) | ||
AdaptiveAvgPool2d (torch.nn.modules.pooling) | Errors (verify) | Metadata (caffe2.python.schema) | SamplingTrain (caffe2.python.layers.sampling_train) | Trie (caffe2.python.binarysize) | ||
AdaptiveAvgPool3d (torch.nn.modules.pooling) | ErrorTrackingProcess (test_dataloader) | Metrics (caffe2.python.parallel_workers) | SamplingTrainableMixin (caffe2.python.layers.sampling_trainable_mixin) | Trie (pyHIPIFY.hipify_python) | ||
AdaptiveLogSoftmaxWithLoss (torch.nn.modules.adaptive) | Event (torch.cuda.streams) | MILSTMCell (caffe2.python.rnn_cell) | Scalar (caffe2.python.schema) | TripletMarginLoss (torch.nn.modules.loss) | ||
AdaptiveMaxPool1d (torch.nn.modules.pooling) | EventList (torch.autograd.profiler) | MILSTMWithAttentionCell (caffe2.python.rnn_cell) | Scatter (torch.nn.parallel._functions) | TupleCls (torch._jit_internal) | ||
AdaptiveMaxPool2d (torch.nn.modules.pooling) | ExceptionWrapper (torch.utils.data._utils) | MNIST (model_defs.mnist) | SchedulerTestNet (test_optim) | TupleInstance (torch._jit_internal) | ||
AdaptiveMaxPool3d (torch.nn.modules.pooling) | ExecutionStep (caffe2.python.core) | MnistNet (test_jit) | ScriptClass (torch.jit) | Type (torch.autograd._functions.tensor) | ||
AdaptiveWeight (caffe2.python.layers.adaptive_weight) | ExecutorTestBase (caffe2.python.test.executor_test_util) | Model (test_cuda) | ScriptMeta (torch.jit) |
| ||
AddBias (caffe2.python.layers.add_bias) | Exponential (torch.distributions.exponential) | Model (model) | ScriptModule (torch.jit) | |||
AffineTransform (torch.distributions.transforms) | ExponentialFamily (torch.distributions.exp_family) | ModelDownloader (caffe2.python.models.download) | SeedDataset (test_dataloader) | UndefinedArguments (tools.cwrap.plugins.NullableArguments) | ||
AlphaDropout (torch.nn.modules.dropout) | ExponentialLR (torch.optim.lr_scheduler) | ModelHelper (caffe2.python.model_helper) | SegfaultDataset (test_dataloader) | Unfold (torch.nn.modules.fold) | ||
Analyzer (caffe2.python.net_printer) | ExportTypes (torch.onnx) | ModelLayer (caffe2.python.layers.layers) | SelectRecordByContext (caffe2.python.layers.select_record_by_context) | Uniform (torch.distributions.uniform) | ||
ArcCosineFeatureMap (caffe2.python.layers.arc_cosine_feature_map) | ExprBuilder (torch.jit.frontend) | ModelTrainerLog (caffe2.python.experiment_util) | SELU (torch.nn.modules.activation) | UniformSampling (caffe2.python.layers.uniform_sampling) | ||
ArgcountChecker (tools.cwrap.plugins.ArgcountChecker) | ExpRelaxedCategorical (torch.distributions.relaxed_categorical) | ModifierContext (caffe2.python.modifier_context) | SemiRandomFeatures (caffe2.python.layers.semi_random_features) | UnpoolingNet (test_nn) | ||
Argument (common_with_cwrap) | ExpTransform (torch.distributions.transforms) | Module (torch.jit.annotations) | Seq2SeqModelCaffe2 (caffe2.python.models.seq2seq.train) | UnrolledCell (caffe2.python.rnn_cell) | ||
Argument (torch._thnn.utils) | ExtensionVersioner (torch.utils._cpp_extension_versioner) | Module (torch.nn.modules.module) | Seq2SeqModelCaffe2EnsembleDecoder (caffe2.python.models.seq2seq.translate) | Unserializable (torch.backends.cudnn.rnn) | ||
ArgumentReferences (tools.cwrap.plugins.ArgumentReferences) | ExternalInitializer (caffe2.python.modeling.initializers) | ModuleDict (torch.nn.modules.container) | Seq2SeqModelCaffe2EnsembleDecoderBase (caffe2.python.models.seq2seq.translate) | Unsupported (caffe2.python.onnx.error) | ||
ASGD (torch.optim.asgd) | ExternalLogger (caffe2.python.experiment_util) | ModuleList (torch.nn.modules.container) | Seq2SeqModelHelper (caffe2.python.models.seq2seq.seq2seq_model_helper) | UnsupportedNodeError (torch.jit.frontend) | ||
AssignmentAlgorithm (caffe2.python.memonger) |
| ModuleTest (common_nn) | Sequential (torch.nn.modules.container) | UploadTaskGroupBuilder (caffe2.python.checkpoint) | ||
AttentionCell (caffe2.python.rnn_cell) | ModuleWrapper (torch.nn.cpp) | SequentialSampler (torch.utils.data.sampler) | Upsample (torch.nn.modules.upsampling) | |||
AttentionType (caffe2.python.attention) | FC (caffe2.python.layers.fc) | MSELoss (torch.nn.modules.loss) | SerializedTestCase (caffe2.python.serialized_test.serialized_test_util) | UpsamplingBilinear2d (torch.nn.modules.upsampling) | ||
Attribute (torch.jit) | FCWithoutBias (caffe2.python.layers.fc_without_bias) | MultiLabelMarginLoss (torch.nn.modules.loss) | Session (caffe2.python.session) | UpsamplingNearest2d (torch.nn.modules.upsampling) | ||
AutoGPU (tools.cwrap.plugins.AutoGPU) | FeatureAlphaDropout (torch.nn.modules.dropout) | MultiLabelSoftMarginLoss (torch.nn.modules.loss) | SetupNets (caffe2.python.task) | UpscaleBlock (model_defs.srresnet) | ||
AvgPool1d (torch.nn.modules.pooling) | FeatureSparseToDense (caffe2.python.layers.feature_sparse_to_dense) | MultiMarginLoss (torch.nn.modules.loss) | SGD (torch.optim.sgd) | UseModifierBase (caffe2.python.modifier_context) | ||
AvgPool2d (torch.nn.modules.pooling) | Field (caffe2.python.schema) | MultiNodeCheckpointManager (caffe2.python.checkpoint) | SgdOptimizer (caffe2.python.optimizer) | UseNormalizer (caffe2.python.normalizer_context) | ||
AvgPool3d (torch.nn.modules.pooling) | FileBaton (torch.utils.file_baton) | Multinomial (torch.distributions.multinomial) | SharedCache (torch.multiprocessing.reductions) | UseOptimizer (caffe2.python.optimizer_context) | ||
| FilelikeMock (test_torch) | MultiPrecisionSgdOptimizer (caffe2.python.optimizer) | ShortStorage (torch) | UseRegularizer (caffe2.python.regularizer_context) | ||
FileManager (gen) | MultiProcessTestCase (test_c10d) | ShortStorage (torch.cuda) |
| |||
Backend (torch.distributed.distributed_c10d) | FileStoreTest (test_c10d) | MultiRNNCell (caffe2.python.rnn_cell) | ShortStorage (torch.distributed.deprecated.remote_types) | |||
Backend (torch._thnn) | FilterDescriptor (torch.backends.cudnn) | MultiRNNCellInitializer (caffe2.python.rnn_cell) | Sigmoid (torch.nn.modules.activation) | Variable (torch.autograd.variable) | ||
Backends (torch._thnn) | Fire (model_defs.squeezenet) | MultiStepLR (torch.optim.lr_scheduler) | SigmoidTransform (torch.distributions.transforms) | VariableMeta (torch.autograd.variable) | ||
BackwardCFunction (torch.autograd.function) | FisherSnedecor (torch.distributions.fishersnedecor) | MultivariateNormal (torch.distributions.multivariate_normal) | SimpleCustomBatch (test_dataloader) | VFModule (torch.nn._VF) | ||
Barrier (test_distributed) | FloatStorage (torch.cuda) | TestPytorchExportModes.MyModel (test_jit) | SimpleQueue (torch.multiprocessing.queue) | Visitor (caffe2.python.net_printer) | ||
Barrier (test_thd_distributed) | FloatStorage (torch.distributed.deprecated.remote_types) |
| SleepDataset (test_dataloader) |
| ||
BaseException (caffe2.python.onnx.error) | FloatStorage (torch) | SmoothL1Loss (torch.nn.modules.loss) | ||||
BasicRNNCell (caffe2.python.rnn_cell) | Fold (torch.nn.modules.fold) | NamedTupleDataset (test_dataloader) | SoftMarginLoss (torch.nn.modules.loss) | Warning (torch.utils.backcompat) | ||
BatchDistillLRLoss (caffe2.python.layers.batch_distill_lr_loss) | FooToPickle (test_jit) | NCHW (caffe2.python.visualize) | Softmax (torch.nn.modules.activation) | WatcherThread (caffe2.python.timeout_guard) | ||
BatchFeeder (caffe2.python.data_workers) | FormattedTimesMixin (torch.autograd.profiler) | NegativeBinomial (torch.distributions.negative_binomial) | Softmax2d (torch.nn.modules.activation) | WeakScriptModuleProxy (torch.jit) | ||
BatchLRLoss (caffe2.python.layers.batch_lr_loss) | Formatter (caffe2.python.docs.formatter) | NestedIOFunction (torch.autograd.function) | SoftmaxTransform (torch.distributions.transforms) | Weibull (torch.distributions.weibull) | ||
BatchMSELoss (caffe2.python.layers.batch_mse_loss) | FP16SgdOptimizer (caffe2.python.optimizer) | Net (network1) | SoftMaxWithLoss (caffe2.experiments.python.device_reduce_sum_bench) | WeightDecayBuilder (caffe2.python.optimizer) | ||
BatchNorm1d (torch.nn.modules.batchnorm) | FractionalMaxPool2d (torch.nn.modules.pooling) | Net (network2) | Softmin (torch.nn.modules.activation) | WeightedRandomSampler (torch.utils.data.sampler) | ||
BatchNorm2d (torch.nn.modules.batchnorm) | FractionalMaxPool3d (torch.nn.modules.pooling) | Net (test_c10d) | Softplus (torch.nn.modules.activation) | WeightNorm (torch.nn.utils.weight_norm) | ||
BatchNorm3d (torch.nn.modules.batchnorm) | FrontendError (torch.jit.frontend) | Net (test_distributed) | Softshrink (torch.nn.modules.activation) | WngradOptimizer (caffe2.python.optimizer) | ||
BatchNormalization (caffe2.python.layers.batch_normalization) | FrontendTypeError (torch.jit.frontend) | Net (test_thd_distributed) | Softsign (torch.nn.modules.activation) | Worker (caffe2.python.parallel_workers) | ||
BatchNormalizer (caffe2.python.normalizer) | FtrlOptimizer (caffe2.python.optimizer) | Net (caffe2.python.core) | SomeClass (update-caffe2-models) | WorkerCoordinator (caffe2.python.parallel_workers) | ||
BatchNormNet (test_distributed) | FuncModule (test_operators) | NetBuilder (caffe2.python.net_builder) | SourceChangeWarning (torch.serialization) | Workspace (caffe2.python.onnx.workspace) | ||
BatchSampler (torch.utils.data.sampler) | Function (common_with_cwrap) | NetDefNode (caffe2.experiments.python.SparseTransformer) | SourceContext (torch.jit.frontend) | WorkspaceType (caffe2.python.task) | ||
BatchSigmoidCrossEntropyLoss (caffe2.python.layers.batch_sigmoid_cross_entropy_loss) | Function (torch._thnn.utils) | NetGradientChecker (caffe2.python.gradient_checker) | SparseAdam (torch.optim.sparse_adam) | WrapDim (tools.cwrap.plugins.WrapDim) | ||
BatchSoftmaxLoss (caffe2.python.layers.batch_softmax_loss) | Function (torch.autograd.function) | NetModifier (caffe2.python.modeling.net_modifier) | SparseFeatureHash (caffe2.python.layers.sparse_feature_hash) | Writer (caffe2.python.dataio) | ||
BCELoss (torch.nn.modules.loss) | Functional (caffe2.python.layers.functional) | NetProcessor (caffe2.python.pipeline) | SparseLookup (caffe2.python.layers.sparse_lookup) |
| ||
BCEWithLogitsLoss (torch.nn.modules.loss) | FunctionBackend (torch.nn.backends.backend) | NewCriterionTest (test_nn) | SpawnContext (torch.multiprocessing.spawn) | |||
BeamSearchForwardOnly (caffe2.python.models.seq2seq.beam_search) | FunctionEvent (torch.autograd.profiler) | NewModuleTest (test_nn) | SpawnTest (test_multiprocessing_spawn) | YellowFinOptimizer (caffe2.python.optimizer) | ||
BeforeAfterCall (tools.cwrap.plugins.BeforeAfterCall) | FunctionEventAvg (torch.autograd.profiler) | NHWC (caffe2.python.visualize) | SpectralNorm (torch.nn.utils.spectral_norm) |
| ||
Benchmark (caffe2.experiments.python.device_reduce_sum_bench) | FunctionMeta (torch.autograd.function) | NLLLoss (torch.nn.modules.loss) | SpectralNormLoadStateDictPreHook (torch.nn.utils.spectral_norm) | |||
BenchmarkMeta (caffe2.experiments.python.device_reduce_sum_bench) |
| NLLLoss2d (torch.nn.modules.loss) | SpectralNormStateDictHook (torch.nn.utils.spectral_norm) | ZeroPad2d (torch.nn.modules.padding) | ||
Bernoulli (torch.distributions.bernoulli) | NNExtension (tools.cwrap.plugins.NNExtension) | Split (caffe2.python.layers.split) |
| |||
Beta (torch.distributions.beta) | Gamma (torch.distributions.gamma) | NNModule (caffe2.python.nomnigraph) | SqueezeNet (model_defs.squeezenet) | |||
Bilinear (torch.nn.modules.linear) | Gather (torch.nn.parallel._functions) | NNTestCase (common_nn) | SRResNet (model_defs.srresnet) | __PrinterOptions (torch._tensor_str) | ||
Binomial (torch.distributions.binomial) | GatherRecord (caffe2.python.layers.gather_record) | NoArgsClass (common_methods_invocations) | TestScript.StarTestReturnThree (test_jit) | _AdaptiveAvgPoolNd (torch.nn.modules.pooling) | ||
BlobReference (caffe2.python.core) | Geometric (torch.distributions.geometric) | Node (caffe2.python.task) | TestScript.StarTestSumAndReturnThree (test_jit) | _AdaptiveLogSoftmaxWithLoss (test_nn) | ||
BlobWeightedSum (caffe2.python.layers.blob_weighted_sum) | GetEntryFromBlobs (caffe2.python.modeling.get_entry_from_blobs) | Normal (torch.distributions.normal) | TestScript.StarTestSumStarred (test_jit) | _AdaptiveMaxPoolNd (torch.nn.modules.pooling) | ||
BoolStorage (torch.cuda) | GFtrlOptimizer (caffe2.python.optimizer) | Normalizer (caffe2.python.normalizer) | State (caffe2.python.parallel_workers) | _AvgPoolNd (torch.nn.modules.pooling) | ||
BoolStorage (torch) | GHMarkdown (caffe2.python.docs.github) | NormalizerContext (caffe2.python.normalizer_context) | StepLR (torch.optim.lr_scheduler) | _BatchNorm (torch.nn.modules.batchnorm) | ||
BoundedGradientProjection (caffe2.python.regularizer) | GHOpDocGenerator (caffe2.python.docs.github) | NotSupportedError (torch.jit.frontend) | StickBreakingTransform (torch.distributions.transforms) | _BlobDict (caffe2.python.workspace) | ||
Broadcast (torch.nn.parallel._functions) | GHOpDocUploader (caffe2.python.docs.github) | NullableArguments (tools.cwrap.plugins.NullableArguments) | StmtBuilder (torch.jit.frontend) | _Boolean (torch.distributions.constraints) | ||
BroadcastingListCls (torch._jit_internal) | GHOperatorDoc (caffe2.python.docs.github) | NumpyTests (test_indexing) | StorageWeakRef (torch.multiprocessing.reductions) | _ConstantPadNd (torch.nn.modules.padding) | ||
BucketWeighted (caffe2.python.layers.bucket_weighted) | GHOperatorEngine (caffe2.python.docs.github) | NYIError (function_wrapper) | StoreOpsTests (caffe2.distributed.store_ops_test_util) | _ConstModuleList (torch.jit) | ||
Builder (torch.jit.frontend) | GILRelease (tools.cwrap.plugins.GILRelease) |
| StoreTestBase (test_c10d) | _ConstSequential (torch.jit) | ||
BuildExtension (torch.utils.cpp_extension) | GlobalCoordinator (caffe2.python.data_workers) | Stream (torch.cuda.streams) | _ContextInfo (caffe2.python.context) | |||
BytesIOContext (test_torch) | GlobalWorkerCoordinator (caffe2.python.parallel_workers) | OneHotCategorical (torch.distributions.one_hot_categorical) | StringDataset (test_dataloader) | _ContextMethodMixin (torch.autograd.function) | ||
ByteStorage (torch.cuda) | GLU (torch.nn.modules.activation) | OnnxAttributes (caffe2.python.onnx.backend) | StringTable (torch.autograd.profiler) | _ContextRegistry (caffe2.python.context) | ||
ByteStorage (torch.distributed.deprecated.remote_types) | GradientChecker (caffe2.python.gradient_checker) | OnnxifiTest (caffe2.python.onnx.test_onnxifi) | Struct (caffe2.python.schema) | _ConvNd (torch.nn.modules.conv) | ||
ByteStorage (torch) | GradientClipping (caffe2.python.modeling.gradient_clipping) | OnnxifiTransformTest (caffe2.python.onnx.test_onnxifi) | StudentT (torch.distributions.studentT) | _ConvTransposeMixin (torch.nn.modules.conv) | ||
| GradientRegistry (caffe2.python.core) | OnnxNode (caffe2.python.onnx.backend) | SubProcess (test_multiprocessing) | _CudaBase (torch.cuda) | ||
GroupL1Norm (caffe2.python.regularizer) | OpDocGenerator (caffe2.python.docs.generator) | Subset (torch.utils.data.dataset) | _DataLoaderIter (torch.utils.data.dataloader) | |||
CachedReader (caffe2.python.cached_reader) | GroupMember (torch.distributed.distributed_c10d) | Operations (caffe2.python.net_builder) | SubsetRandomSampler (torch.utils.data.sampler) | _DatasetRandomReader (caffe2.python.dataset) | ||
Caffe2Backend (caffe2.python.onnx.backend) | GroupNorm (torch.nn.modules.normalization) | OperatorDoc (caffe2.python.docs.generator) | SumElements (caffe2.experiments.python.device_reduce_sum_bench) | _DatasetReader (caffe2.python.dataset) | ||
Caffe2CppRep (caffe2.python.onnx.backend_cpp_rep) | GRU (torch.nn.modules.rnn) | OperatorEngine (caffe2.python.docs.generator) | SumSqrElements (caffe2.experiments.python.device_reduce_sum_bench) | _DatasetWriter (caffe2.python.dataset) | ||
Caffe2Frontend (caffe2.python.onnx.frontend) | GRUCell (caffe2.python.gru_cell) | OpSpec (caffe2.python.layer_test_util) | SuperResolutionNet (model_defs.super_resolution) | _Dependent (torch.distributions.constraints) | ||
Caffe2Rep (caffe2.python.onnx.backend_rep) | GRUCell (torch.nn.modules.rnn) | Optimizer (caffe2.python.optimizer) | SyncBatchNorm (torch.nn.modules.batchnorm) | _DependentProperty (torch.distributions.constraints) | ||
Categorical (torch.distributions.categorical) | Gumbel (torch.distributions.gumbel) | Optimizer (torch.optim.optimizer) | SyncBatchNorm (torch.nn.modules._functions) | _Dirichlet (torch.distributions.dirichlet) | ||
Cauchy (torch.distributions.cauchy) |
| OptimizerContext (caffe2.python.optimizer_context) | SynchronizedSeedDataset (test_dataloader) | _disable_tracing (torch.jit) | ||
CELU (torch.nn.modules.activation) | OptimizerTestBase (caffe2.python.optimizer_test_util) |
| _DistributedBase (torch.distributed.deprecated.remote_types) | |||
CharRNN (caffe2.python.examples.char_rnn) | HalfCauchy (torch.distributions.half_cauchy) | OptionalArguments (tools.cwrap.plugins.OptionalArguments) | _DistributedRequest (torch.distributed.deprecated) | |||
CharStorage (torch.cuda) | HalfNormal (torch.distributions.half_normal) | OrderedBufferDict (torch.jit) | TagContext (caffe2.python.layers.tags) | _DistTestBase (test_distributed) | ||
CharStorage (torch.distributed.deprecated.remote_types) | HalfStorage (torch.cuda) | OrderedDictWrapper (torch.jit) | Tags (caffe2.python.layers.tags) | _DistTestBase (test_thd_distributed) | ||
CharStorage (torch) | HalfStorage (torch.distributed.deprecated.remote_types) | OrderedDictWrapper (torch.nn.cpp) | Tanh (torch.nn.modules.activation) | _DropoutNd (torch.nn.modules.dropout) | ||
CheckpointFunction (torch.utils.checkpoint) | HalfStorage (torch) | OrderedModuleDict (torch.jit) | Tanhshrink (torch.nn.modules.activation) | _FakeDict (pytorch_helper) | ||
CheckpointManager (caffe2.python.checkpoint) | Hardshrink (torch.nn.modules.activation) | OrderedParameterDict (torch.jit) | Task (caffe2.python.task) | _FC2 (test_distributed) | ||
Chi2 (torch.distributions.chi2) | Hardtanh (torch.nn.modules.activation) | Output (caffe2.python.pipeline) | TaskGroup (caffe2.python.task) | _FC2 (test_thd_distributed) | ||
Cluster (caffe2.python.task) | HelperWrapper (caffe2.python.brew) |
| TaskOutput (caffe2.python.task) | _Formatter (torch._tensor_str) | ||
CNNModelHelper (caffe2.python.cnn) | HingeEmbeddingLoss (torch.nn.modules.loss) | TaskOutputList (caffe2.python.task) | _Functional (caffe2.python.functional) | |||
CodeTemplate (code_template) | HomotopyWeight (caffe2.python.layers.homotopy_weight) | PackedSequence (torch.nn.utils.rnn) | TCPStoreTest (test_c10d) | _GreaterThan (torch.distributions.constraints) | ||
CollectivesConcurrencyControl (caffe2.python.data_parallel_model) | HypothesisTestCase (caffe2.python.hypothesis_test_util) | PackedSequenceTest (test_nn) | Tensor (torch.tensor) | _GreaterThanEq (torch.distributions.constraints) | ||
CompilationUnit (torch.jit) |
| PairwiseDistance (torch.nn.modules.distance) | TensorDataset (torch.utils.data.dataset) | _HalfOpenInterval (torch.distributions.constraints) | ||
CompiledRunnable (caffe2.python.session) | PairwiseSimilarity (caffe2.python.layers.pairwise_similarity) | TensorDescriptor (torch.backends.cudnn) | _HookMixin (torch.autograd.function) | |||
ComposeTransform (torch.distributions.transforms) | Independent (torch.distributions.independent) | Parameter (torch.nn.parameter) | TensorDescriptorArray (torch.backends.cudnn) | _InstanceNorm (torch.nn.modules.instancenorm) | ||
CompositeReader (caffe2.python.dataio) | Initializer (caffe2.python.modeling.initializers) | ParameterDict (torch.nn.modules.container) | TensorRTOpTest (caffe2.python.trt.test_trt) | _IntegerGreaterThan (torch.distributions.constraints) | ||
CompositeReaderBuilder (caffe2.python.dataio) | InplaceFunction (torch.autograd.function) | ParameterInfo (caffe2.python.modeling.parameter_info) | TensorRTTransformTest (caffe2.python.trt.test_trt) | _IntegerInterval (torch.distributions.constraints) | ||
ComputeHistogramForBlobs (caffe2.python.modeling.compute_histogram_for_blobs) | InputError (pyHIPIFY.hipify_python) | ParameterList (torch.nn.modules.container) | TestAgainstScipy (test_distributions) | _IntegerLessThan (torch.distributions.constraints) | ||
ComputeNormForBlobs (caffe2.python.modeling.compute_norm_for_blobs) | InputVariableMixin (test_nn) | ParameterSharingContext (caffe2.python.modeling.parameter_sharing) | TestAutograd (test_autograd) | _Interval (torch.distributions.constraints) | ||
ComputeStatisticsForBlobs (caffe2.python.modeling.compute_statistics_for_blobs) | InstanceNorm1d (torch.nn.modules.instancenorm) | ParameterTags (caffe2.python.modeling.parameter_info) | TestBase (common_nn) | _InverseTransform (torch.distributions.transforms) | ||
Concat (caffe2.python.layers.concat) | InstanceNorm2d (torch.nn.modules.instancenorm) | Pareto (torch.distributions.pareto) | TestBatched (test_jit) | _LessThan (torch.distributions.constraints) | ||
ConcatDataset (torch.utils.data.dataset) | InstanceNorm3d (torch.nn.modules.instancenorm) | Parser (caffe2.python.docs.parser) | TestBottleneck (test_utils) | _Loop (caffe2.python.net_builder) | ||
ConnectionWrapper (torch.multiprocessing.queue) | InstantiationContext (caffe2.python.layers.layers) | PatchVisualizer (caffe2.python.visualize) | TestCaffe2Backend (test_pytorch_helper) | _Loss (torch.nn.modules.loss) | ||
ConstantArguments (tools.cwrap.plugins.ConstantArguments) | Interval (torch.autograd.profiler) | Pipe (caffe2.python.dataio) | TestCaffe2Backend (test_pytorch_onnx_caffe2) | _LowerCholesky (torch.distributions.constraints) | ||
ConstantNorm (caffe2.python.regularizer) | IntStorage (torch.cuda) | PipedReaderBuilder (caffe2.python.dataio) | TestCase (expecttest) | _LowerTriangular (torch.distributions.constraints) | ||
ConstantPad1d (torch.nn.modules.padding) | IntStorage (torch.distributed.deprecated.remote_types) | PixelShuffle (torch.nn.modules.pixelshuffle) | TestCase (caffe2.python.onnx.tests.test_utils) | _LPPoolNd (torch.nn.modules.pooling) | ||
ConstantPad2d (torch.nn.modules.padding) | IntStorage (torch) | Plan (caffe2.python.core) | TestCase (common_utils) | _LRScheduler (torch.optim.lr_scheduler) | ||
ConstantPad3d (torch.nn.modules.padding) | IR (caffe2.python.core) | Poisson (torch.distributions.poisson) | TestCase (caffe2.python.test_util) | _Match (torch.distributions.kl) | ||
ConstantWeight (caffe2.python.layers.constant_weight) |
| PoissonNLLLoss (torch.nn.modules.loss) | TestCheckpoint (test_utils) | _MaxPoolNd (torch.nn.modules.pooling) | ||
Constraint (torch.distributions.constraints) | Pool (torch.multiprocessing.pool) | TestCollectEnv (test_utils) | _MaxUnpoolNd (torch.nn.modules.pooling) | |||
ConstraintRegistry (torch.distributions.constraint_registry) | JitTestCase (test_jit) | PositionWeighted (caffe2.python.layers.position_weighted) | TestConcatDataset (test_dataloader) | _netD (model_defs.dcgan) | ||
Container (torch.nn.modules.container) | Job (caffe2.python.checkpoint) | PowerTransform (torch.distributions.transforms) | TestConstraintRegistry (test_distributions) | _netG (model_defs.dcgan) | ||
ContextProp (torch.backends.cudnn) | JobRunner (caffe2.python.checkpoint) | PredictorExportMeta (caffe2.python.predictor.predictor_exporter) | TestConstraints (test_distributions) | _OpNamespace (torch._ops) | ||
ContextProp (torch.backends.cuda) |
| PrefixFileStoreTest (test_c10d) | TestCppExtension (test_cpp_extensions) | _Ops (torch._ops) | ||
Conv (caffe2.python.layers.conv) | PrefixTCPStoreTest (test_c10d) | TestCudaPrimaryCtx (test_cuda_primary_ctx) | _PositiveDefinite (torch.distributions.constraints) | |||
Conv1d (torch.nn.modules.conv) | Kernel (torch.autograd.profiler) | PReLU (torch.nn.modules.activation) | TestCudaSparse (test_sparse) | _QueueReader (caffe2.python.queue_util) | ||
Conv2d (torch.nn.modules.conv) | KLDivLoss (torch.nn.modules.loss) | Printer (caffe2.python.net_printer) | TestCudaUncoalescedSparse (test_sparse) | _QueueReader (caffe2.python.record_queue) | ||
Conv3d (torch.nn.modules.conv) |
| ProcessGroupGlooTest (test_c10d) | TestCustomOperators (test_custom_ops) | _QueueWriter (caffe2.python.queue_util) | ||
ConvTranspose1d (torch.nn.modules.conv) | ProcessGroupNCCLTest (test_c10d) | TestCustomPinFn (test_dataloader) | _QueueWriter (caffe2.python.record_queue) | |||
ConvTranspose2d (torch.nn.modules.conv) | L1Loss (torch.nn.modules.loss) | ProcessingReader (caffe2.python.pipeline) | TestDataLoader (test_dataloader) | _Real (torch.distributions.constraints) | ||
ConvTranspose3d (torch.nn.modules.conv) | L1Norm (caffe2.python.regularizer) | PseudoFP16Initializer (caffe2.python.modeling.initializers) | TestDataLoader (test_utils) | _RealVector (torch.distributions.constraints) | ||
CosineAnnealingLR (torch.optim.lr_scheduler) | L2Norm (caffe2.python.regularizer) |
| TestDatasetRandomSplit (test_dataloader) | _ReflectionPadNd (torch.nn.modules.padding) | ||
CosineEmbeddingLoss (torch.nn.modules.loss) | LabelSmooth (caffe2.python.layers.label_smooth) | TestDictDataLoader (test_dataloader) | _ReplicationPadNd (torch.nn.modules.padding) | |||
CosineSimilarity (torch.nn.modules.distance) | LambdaLR (torch.optim.lr_scheduler) | QuantizedGRUCell (torch.jit.quantized) | TestDistBackend (test_thd_distributed) | _ReporterBuilder (caffe2.python.net_builder) | ||
CounterReader (caffe2.python.dataio) | LambdaLRTestObject (test_optim) | QuantizedLinear (torch.jit.quantized) | TestDistBackend (test_distributed) | _RequiredParameter (torch.optim.optimizer) | ||
CRFWithLoss (caffe2.python.crf) | Laplace (torch.distributions.laplace) | QuantizedLSTMCell (torch.jit.quantized) | TestDistributions (test_distributions) | _RunElseNet (caffe2.python.net_builder) | ||
CriterionTest (common_nn) | LastNWindowCollector (caffe2.python.layers.last_n_window_collector) | QuantizedRNNCell (torch.jit.quantized) | TestDistributionShapes (test_distributions) | _RunIf (caffe2.python.net_builder) | ||
CrossEntropyLoss (torch.nn.modules.loss) | LayerModelHelper (caffe2.python.layer_model_helper) | QuantizedRNNCellBase (torch.jit.quantized) | TestDocCoverage (test_docs_coverage) | _RunIfNet (caffe2.python.net_builder) | ||
CrossMapLRN2d (torch.nn._functions.thnn.normalization) | LayerNorm (torch.nn.modules.normalization) | Queue (torch.multiprocessing.queue) | TestDTypeInfo (test_type_info) | _RunOnce (caffe2.python.net_builder) | ||
CrossMapLRN2d (torch.nn.modules.normalization) | LayerNormalization (caffe2.python.layers.layer_normalization) | Queue (caffe2.python.queue_util) | TestEndToEndHybridFrontendModels (test_jit) | _RunWhileCondition (caffe2.python.net_builder) | ||
CTCLoss (torch.nn.modules.loss) | LayerNormalizer (caffe2.python.normalizer) | QueueWrapper (caffe2.python.queue_util) | TestExpectTest (test_expecttest) | _RunWhileNet (caffe2.python.net_builder) | ||
CudaError (torch.cuda) | LayerNormLSTMCell (caffe2.python.rnn_cell) |
| TestFFI (test_utils) | _SchemaNode (caffe2.python.schema) | ||
CudaMemoryLeakCheck (common_utils) | LayerNormMILSTMCell (caffe2.python.rnn_cell) | TestHub (test_utils) | _SetupBuilder (caffe2.python.net_builder) | |||
CUDAModule (torch.backends.cuda) | LayerParameter (caffe2.python.layers.layers) | RandomDatasetMock (test_utils) | TestIndexing (test_indexing) | _Simplex (torch.distributions.constraints) | ||
CuDNNError (torch.backends.cudnn) | LayersTestCase (caffe2.python.layer_test_util) | RandomFourierFeatures (caffe2.python.layers.random_fourier_features) | TestIndividualWorkerQueue (test_dataloader) | _StopGuard (caffe2.python.net_builder) | ||
CuDNNHandle (torch.backends.cudnn) | LBFGS (torch.optim.lbfgs) | RandomSampler (torch.utils.data.sampler) | TestJit (test_distributions) | _StorageBase (torch.storage) | ||
CudnnModule (torch.backends.cudnn) | LeakyReLU (torch.nn.modules.activation) | Reader (caffe2.python.dataio) | TestJit (test_jit) | _TestTorchMixin (test_torch) | ||
CuDNNPlugin (tools.cwrap.plugins.CuDNNPlugin) | LegacyCosineAnnealingLR (test_optim) | ReaderBuilder (caffe2.python.dataio) | TestKL (test_distributions) | _WeightedLoss (torch.nn.modules.loss) | ||
CWrapPlugin (tools.cwrap.plugins) | LegacyExponentialLR (test_optim) | ReaderWithDelay (caffe2.python.dataio) | TestLazyLogitsInitialization (test_distributions) | _WorkspaceCtx (caffe2.python.onnx.workspace) | ||
| LegacyMultiStepLR (test_optim) | ReaderWithLimit (caffe2.python.dataio) | TestLRScheduler (test_optim) |
| ||
LegacyStepLR (test_optim) | ReaderWithLimitBase (caffe2.python.dataio) | TestModels (test_models) | ||||
DataLoader (torch.utils.data.dataloader) | LegacyTracedModule (torch.jit) | ReaderWithTimeLimit (caffe2.python.dataio) | TestMPI (test_distributed) | bcolors (pyHIPIFY.hipify_python) | ||
DataParallel (torch.nn.parallel.data_parallel) | Linear (torch.nn.modules.linear) | RecordQueue (caffe2.python.record_queue) | TestMPI (test_thd_distributed) | build_ext (setup) | ||
Dataset (torch.utils.data.dataset) | List (caffe2.python.schema) | ReduceAddCoalesced (torch.nn.parallel._functions) | TestMSNPUTensor (test_cpp_extensions) |
| ||
Dataset (caffe2.python.dataset) | ListCls (torch._jit_internal) | ReduceLROnPlateau (torch.optim.lr_scheduler) | TestMultiprocessing (test_multiprocessing) | |||
DataType (caffe2.python.core) | ListInstance (torch._jit_internal) | ReflectionPad1d (torch.nn.modules.padding) | TestNamedTupleAPI (test_namedtuple_return_api) | clean (setup) | ||
DataWorker (caffe2.python.data_workers) | LocalResponseNorm (torch.nn.modules.normalization) | ReflectionPad2d (torch.nn.modules.padding) | TestNamedTupleDataLoader (test_dataloader) | cudaOutputMode (torch.cuda.profiler) | ||
DBFileReader (caffe2.python.db_file_reader) | LocalSession (caffe2.python.session) | RegularizationBy (caffe2.python.regularizer) | TestNCCL (test_nccl) | cudaStatus (torch.cuda) | ||
DebugMode (caffe2.python.utils) | LogBarrier (caffe2.python.regularizer) | Regularizer (caffe2.python.regularizer) | TestNN (test_nn) | cuFFTPlanCache (torch.backends.cuda) | ||
DeferredCudaCallError (torch.cuda) | LogisticNormal (torch.distributions.logistic_normal) | RegularizerContext (caffe2.python.regularizer_context) | TestNNInit (test_nn) | cwrap (tools.cwrap.cwrap) | ||
TestScript.DerivedStateModule (test_jit) | LogitRelaxedBernoulli (torch.distributions.relaxed_bernoulli) | RelaxedBernoulli (torch.distributions.relaxed_bernoulli) | TestNumbaIntegration (test_numba_integration) |
| ||
DeviceChecker (caffe2.python.device_checker) | LogNormal (torch.distributions.log_normal) | RelaxedOneHotCategorical (torch.distributions.relaxed_categorical) | TestNumericalStability (test_distributions) | |||
DictCls (torch._jit_internal) | LogSigmoid (torch.nn.modules.activation) | ReLU (torch.nn.modules.activation) | TestONNXUtils (test_utils) | define_context (caffe2.python.context) | ||
DictDataset (test_dataloader) | LogSoftmax (torch.nn.modules.activation) | ReLU6 (torch.nn.modules.activation) | TestOperators (test_operators) | detect_anomaly (torch.autograd.anomaly_mode) | ||
DictInstance (torch._jit_internal) | LongStorage (torch.cuda) | RemapEntry (caffe2.python.core) | TestOptim (test_optim) | device (torch.cuda) | ||
Dirichlet (torch.distributions.dirichlet) | LongStorage (torch.distributed.deprecated.remote_types) | RemovableHandle (torch.utils.hooks) | TestProperExitDataset (test_dataloader) | device_of (torch.cuda) | ||
DistributedDataParallel (torch.nn.parallel.deprecated.distributed) | LongStorage (torch) | RendezvousEnvTest (test_c10d) | TestPytorchExportModes (test_jit) | disablefuncmode (pyHIPIFY.hipify_python) | ||
DistributedDataParallel (torch.nn.parallel.distributed) | LowerCholeskyTransform (torch.distributions.transforms) | RendezvousFileTest (test_c10d) | TestRsample (test_distributions) | dist_backend (torch.distributed.deprecated) | ||
DistributedDataParallelCPU (torch.nn.parallel.distributed_cpu) | LowRankMultivariateNormal (torch.distributions.lowrank_multivariate_normal) | RendezvousTCPTest (test_c10d) | TestScript (test_jit) | dont_convert (common_methods_invocations) | ||
DistributedDataParallelCPU (torch.nn.parallel.deprecated.distributed_cpu) | LPPool1d (torch.nn.modules.pooling) | RendezvousTest (test_c10d) | TestSparse (test_sparse) |
| ||
DistributedDataParallelTest (test_c10d) | LPPool2d (torch.nn.modules.pooling) | ReplicationPad1d (torch.nn.modules.padding) | TestSparseOneOff (test_sparse) | |||
DistributedSampler (torch.utils.data.distributed) | LRModificationTestBase (caffe2.python.optimizer_test_util) | ReplicationPad2d (torch.nn.modules.padding) | TestStringDataLoader (test_dataloader) | emit_nvtx (torch.autograd.profiler) | ||
Distribution (torch.distributions.distribution) | LSTM (torch.nn.modules.rnn) | ReplicationPad3d (torch.nn.modules.padding) | TestTensorDataset (test_dataloader) | enable_grad (torch.autograd.grad_mode) | ||
DocGenerator (caffe2.python.docs.generator) | LSTMCell (caffe2.python.rnn_cell) | ReservoirSampling (caffe2.python.layers.reservoir_sampling) | TestTorch (test_torch) |
| ||
DocUploader (caffe2.python.docs.generator) | LSTMCell (torch.nn.modules.rnn) | ResidualBlock (model_defs.srresnet) | TestTransforms (test_distributions) | |||
DoubleStorage (torch.cuda) | LstmFlatteningResult (model_defs.lstm_flattening_result) | Resize (torch.autograd._functions.tensor) | TestTypeHints (test_type_hints) | group (torch.distributed.deprecated) | ||
DoubleStorage (torch.distributed.deprecated.remote_types) | LSTMInitializer (caffe2.python.rnn_cell) | ResNetBuilder (caffe2.python.models.resnet) | TestUncoalescedSparse (test_sparse) | group (torch.distributed.distributed_c10d) | ||
DoubleStorage (torch) | LSTMWithAttentionCell (caffe2.python.rnn_cell) | ReturnArguments (tools.cwrap.plugins.ReturnArguments) | TestValidation (test_distributions) |
| ||
DownloadingTestCase (caffe2.python.onnx.tests.test_utils) | LSTMWithAttentionDecoder (caffe2.python.models.seq2seq.seq2seq_util) | ReversePseudoFP16Initializer (caffe2.python.modeling.initializers) | TestVerify (test_verify) | |||
Dropout (torch.nn.modules.dropout) |
| RMSprop (torch.optim.rmsprop) | TestWorkerQueueDataset (test_dataloader) | install (setup) | ||
Dropout (caffe2.python.layers.dropout) | RmsPropOptimizer (caffe2.python.optimizer) | Text (caffe2.python.net_printer) |
| |||
Dropout2d (torch.nn.modules.dropout) | ManagerWatchdog (torch.utils.data._utils.worker) | RNN (torch.nn.modules.rnn) | TextFileReader (caffe2.python.text_file_reader) | |||
Dropout3d (torch.nn.modules.dropout) | MapToRange (caffe2.python.layers.build_index) | RNNBase (torch.nn.modules.rnn) | THNNBackendBase (torch._thnn.utils) | lazy_property (torch.distributions.utils) | ||