10 Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale` 11 that define the base `Normal` distribution transformed with the 12 `StickBreakingTransform` such that:: 14 X ~ LogisticNormal(loc, scale) 15 Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale) 18 loc (float or Tensor): mean of the base distribution 19 scale (float or Tensor): standard deviation of the base distribution 23 >>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1) 24 >>> # of the base Normal distribution 25 >>> m = distributions.LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3)) 27 tensor([ 0.7653, 0.0341, 0.0579, 0.1427]) 30 arg_constraints = {
'loc': constraints.real,
'scale': constraints.positive}
31 support = constraints.simplex
34 def __init__(self, loc, scale, validate_args=None):
35 base_dist =
Normal(loc, scale)
36 super(LogisticNormal, self).__init__(base_dist,
38 validate_args=validate_args)
42 def expand(self, batch_shape, _instance=None):
44 return super(LogisticNormal, self).expand(batch_shape, _instance=new)
48 return self.base_dist.loc
52 return self.base_dist.scale
def _get_checked_instance(self, cls, _instance=None)