Caffe2 - C++ API
A deep learning, cross platform ML framework
Public Member Functions
torch::data::samplers::RandomSampler Class Reference

A Sampler that returns random indices. More...

#include <random.h>

Inheritance diagram for torch::data::samplers::RandomSampler:
torch::data::samplers::Sampler<>

Public Member Functions

TORCH_API RandomSampler (int64_t size, Dtype index_dtype=torch::kInt64)
 Constructs a RandomSampler with a size and dtype for the stored indices. More...
 
TORCH_API void reset (optional< size_t > new_size=nullopt) override
 Resets the RandomSampler to a new set of indices.
 
TORCH_API optional< std::vector< size_t > > next (size_t batch_size) override
 Returns the next batch of indices.
 
TORCH_API void save (serialize::OutputArchive &archive) const override
 Serializes the RandomSampler to the archive.
 
TORCH_API void load (serialize::InputArchive &archive) override
 Deserializes the RandomSampler from the archive.
 
TORCH_API size_t index () const noexcept
 Returns the current index of the RandomSampler.
 

Additional Inherited Members

- Public Types inherited from torch::data::samplers::Sampler<>
using BatchRequestType = std::vector< size_t >
 

Detailed Description

A Sampler that returns random indices.

Definition at line 22 of file random.h.

Constructor & Destructor Documentation

torch::data::samplers::RandomSampler::RandomSampler ( int64_t  size,
Dtype  index_dtype = torch::kInt64 
)
explicit

Constructs a RandomSampler with a size and dtype for the stored indices.

The constructor will eagerly allocate all required indices, which is the sequence 0 ... size - 1. index_dtype is the data type of the stored indices. You can change it to influence memory usage.

Definition at line 12 of file random.cpp.


The documentation for this class was generated from the following files: