1 #include "caffe2/operators/percentile_op.h" 6 bool PercentileOp<CPUContext>::RunOnDevice() {
7 const auto& original_values = Input(X);
8 CAFFE_ENFORCE_EQ(original_values.dim(), 2);
9 const auto num_examples = original_values.size(0);
10 const float* original_values_data = original_values.template data<float>();
11 const auto num_features = original_values.size(1);
13 const auto& value_pct_pairs = Input(VAL_PCT_PAIRS);
14 CAFFE_ENFORCE_EQ(value_pct_pairs.dim(), 2);
15 CAFFE_ENFORCE_EQ(value_pct_pairs.size(1), 2);
16 const int num_values = value_pct_pairs.size(0);
17 const float* value_pct_data = value_pct_pairs.template data<float>();
19 const auto& lengths = Input(LENS);
20 const int* lengths_data = lengths.template data<int>();
21 CAFFE_ENFORCE_EQ(lengths.numel(), num_features);
24 std::accumulate(lengths_data, lengths_data + lengths.numel(), 0),
26 "Sum of lengths should be equal to the total number of samples");
31 at::dtype<float>().device(CPU));
35 at::dtype<float>().device(CPU));
36 float* values_tensor_data = values_tensor.template mutable_data<float>();
37 float* percentiles_tensor_data =
38 percentiles_tensor.template mutable_data<float>();
39 for (
int ind = 0; ind < num_values; ind++) {
40 values_tensor_data[ind] = value_pct_data[2 * ind];
41 percentiles_tensor_data[ind] = value_pct_data[2 * ind + 1];
44 auto* percentile_values =
45 Output(PCT, original_values.sizes(), at::dtype<float>());
46 float* percentile_values_data =
47 percentile_values->template mutable_data<float>();
50 int current_dist_start = 0;
52 for (
int i = 0; i < num_examples; i++) {
53 current_dist_start = 0;
55 for (
int j = 0; j < num_features; j++) {
56 current_length = lengths_data[j];
57 const auto lower_bound =
59 values_tensor_data + current_dist_start,
60 values_tensor_data + current_dist_start + current_length,
61 original_values_data[current_ind]) -
63 if (lower_bound == current_dist_start + current_length) {
64 percentile_values_data[current_ind] = 1.0;
66 original_values_data[current_ind] ==
67 values_tensor_data[lower_bound]) {
68 percentile_values_data[current_ind] =
69 percentiles_tensor_data[lower_bound];
70 }
else if (lower_bound == current_dist_start) {
71 percentile_values_data[current_ind] = 0.0;
73 float lower_pct = percentiles_tensor_data[lower_bound - 1];
74 float upper_pct = percentiles_tensor_data[lower_bound];
75 float interval_length = values_tensor_data[lower_bound] -
76 values_tensor_data[lower_bound - 1];
77 float normalized_dist_to_lower = (original_values_data[current_ind] -
78 values_tensor_data[lower_bound - 1]) /
80 percentile_values_data[current_ind] =
81 lower_pct + normalized_dist_to_lower * (upper_pct - lower_pct);
83 current_dist_start += current_length;
90 REGISTER_CPU_OPERATOR(Percentile, PercentileOp<CPUContext>);
91 OPERATOR_SCHEMA(Percentile)
94 .IdenticalTypeAndShapeOfInput(0)
96 This operator is used to find percentile representations for raw values, given a sample 97 set of raw values, labeled with their corresponding percentiles from the same distribution. 98 In particular, this operator takes as input a tensor of floats to find the percentile values 99 for, a 2D tensor of floats, where the first column of the tensor represents sampled values, 100 and the second column represents the percentile labels, and a tensor of integers lengths. 102 This lengths tensor is used because the operator works on multiple sets of raw values at the same time. For 103 example, for an input: 104 original_values=[[3, 5, 3],[5, 1, 6]], lengths = [2, 1, 1], value_to_pct = [[3, 0.2], [5, 0.5], [1, 0.3], [3. 0.6]] 106 Our operator expects that each column i of the input tensor is sampled from distribution i. Lengths tells 107 us that the first two elements in value_to_pct are sampled from distribution 1, the next is from distribution two, 108 and the last is from distribution 3. We expect the output of our operator to give us [[0.2, 1.0, 0.6], [0.5, 0.3, 1.0]]. 110 To calculate the percentile of an element, we check to see if its value is already mapped to 111 a percentile in value_to_pct. If so, we return that value. If not, we linearly interpolate between 112 the two closest values in value_to_pct. If the value is larger than all values in value_to_pct, we 113 return 1. If it's smaller than all the values, we return 0. 119 "Input 2D tensor of floats, representing the original, raw data to calculate percentiles for.")
123 "Sorted 2D tensor, with 2 columns. Each element in the first column is a float representing the" 124 " raw value of a sample. Its corresponding element in the next column represents the percentile it maps to.")
128 "1D tensor, representing the length of each distribution. We expect that the sum of elements of this tensor" 129 " is equal to the total length of value_to_pct.")
133 "1D tensor of floats, with the same dimensions as the flattened input tensor. Each element " 134 "of this tensor, percentile_values[i], corresponds to the percentile calculated " 135 "for original_values[i].");
137 NO_GRADIENT(Percentile);
void ReinitializeTensor(Tensor *tensor, at::IntArrayRef dims, at::TensorOptions options)
Reinitialize a Tensor to given dims and options if necessary, note that this will not do anything if ...
A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...