Caffe2 - C++ API
A deep learning, cross platform ML framework
adam_op.cc
1 #include "adam_op.h"
2 
3 namespace caffe2 {
4 
5 REGISTER_CPU_OPERATOR(Adam, AdamOp<float, CPUContext>);
6 OPERATOR_SCHEMA(Adam)
7  .NumInputs(6)
8  .NumOutputs(3, 4)
9  .AllowInplace({{0, 0}, {1, 1}, {2, 2}})
10  .DeviceInferenceFunction([](const OperatorDef& def) {
11  auto op_device =
12  def.has_device_option() ? def.device_option() : DeviceOption();
13  vector<DeviceOption> in_dev(def.input_size(), op_device);
14  vector<DeviceOption> out_dev(def.output_size(), op_device);
15  // ITER input lives on CPU
16  in_dev[5] = DeviceOption();
17  return std::make_pair(in_dev, out_dev);
18  })
19  .SetDoc(R"DOC(
20 
21 Computes the Adam update (https://arxiv.org/abs/1412.6980) for an
22 input gradient and momentum parameters. Concretely, given inputs
23 (param, m1, m2, grad, lr, iters),
24 
25  t = iters + 1
26  correction_multiplier = sqrt(1 - power(beta2, t)) /
27  (1 - power(beta1, t))
28  m1_o = (beta1 * m1) + (1 - beta1) * grad
29  m2_o = (beta2 * m2) + (1 - beta2) * np.square(grad)
30  grad_o = correction_multiplier * m1_o / \
31  (sqrt(m2_o) + epsilon)
32  param_o = param + lr * grad_o
33 
34 and returns (param_o, m1_o, m2_o, grad_o), in which grad_o is an optional output
35 
36 )DOC")
37  .Input(0, "param", "Parameters to be updated")
38  .Input(1, "moment_1", "First moment history")
39  .Input(2, "moment_2", "Second moment history")
40  .Input(3, "grad", "Gradient computed")
41  .Input(4, "lr", "learning rate")
42  .Input(5, "iter", "iteration number")
43  .Output(0, "output_param", "Updated parameters")
44  .Output(1, "output_moment_1", "Updated first moment")
45  .Output(2, "output_moment_2", "Updated second moment")
46  .Output(3, "output_grad", "Optional Effective gradient")
47  .Arg("beta1", "Default 0.9")
48  .Arg("beta2", "Default 0.999")
49  .Arg("epsilon", "Default 1e-5");
50 
51 REGISTER_CPU_OPERATOR(SparseAdam, SparseAdamOp<float, CPUContext>);
52 OPERATOR_SCHEMA(SparseAdam)
53  .NumInputs(7)
54  .NumOutputs(3, 4)
55  .EnforceInplace({{0, 0}, {1, 1}, {2, 2}})
56  .SetDoc(R"DOC(
57 
58  Computes the Adam Update for the sparse case.
59  Given inputs (param, moment1, moment2, indices, grad, lr, iter), runs the dense
60  Adam on (param, moment1[indices], momemnt2[indices], lr, iter) and returns
61  (new_param, new_moment1, new_moment2) as in dense case
62 
63  )DOC")
64  .Input(0, "param", "Parameters to be updated")
65  .Input(1, "moment_1", "First moment history")
66  .Input(2, "moment_2", "Second moment history")
67  .Input(3, "indices", "Sparse indices")
68  .Input(4, "grad", "Gradient computed")
69  .Input(5, "lr", "learning rate")
70  .Input(6, "iter", "iteration number")
71  .Output(0, "output_param", "Updated parameters")
72  .Output(1, "output_moment_1", "Updated first moment")
73  .Output(2, "output_moment_2", "Updated second moment")
74  .Output(3, "output_grad", "Optional Effective gradient")
75  .Arg("beta1", "Default 0.9")
76  .Arg("beta2", "Default 0.999")
77  .Arg("epsilon", "Default 1e-5");
78 
79 REGISTER_CPU_OPERATOR(
80  RowWiseSparseAdam,
81  RowWiseSparseAdamOp<float, CPUContext>);
82 OPERATOR_SCHEMA(RowWiseSparseAdam)
83  .NumInputs(7)
84  .NumOutputs(3, 4)
85  .EnforceInplace({{0, 0}, {1, 1}, {2, 2}})
86  .SetDoc(R"DOC(
87 
88  Computes a modified Adam Update for the sparse case.
89  Given inputs (param, moment1, moment2, indices, grad, lr, iter), runs the
90  Adam update on (param, moment1[indices], moment2[indices], lr, iter) and returns
91  (new_param, new_moment1, new_moment2), where moment2 is a 1D tensor
92  with length equal to the number of rows in param:
93  shape(moment2) == shape(param)[0]. Each element of moment2 is
94  applied to an entire row of param, and the new moment2 values are
95  calculated by averaging across the row.
96 
97  )DOC")
98  .Input(0, "param", "Parameters to be updated")
99  .Input(1, "moment_1", "First moment history")
100  .Input(2, "moment_2", "Second moment history")
101  .Input(3, "indices", "Sparse indices")
102  .Input(4, "grad", "Gradient computed")
103  .Input(5, "lr", "learning rate")
104  .Input(6, "iter", "iteration number")
105  .Output(0, "output_param", "Updated parameters")
106  .Output(1, "output_moment_1", "Updated first moment")
107  .Output(2, "output_moment_2", "Updated second moment")
108  .Output(3, "output_grad", "Optional Effective gradient")
109  .Arg("beta1", "Default 0.9")
110  .Arg("beta2", "Default 0.999")
111  .Arg("epsilon", "Default 1e-5");
112 
113 SHOULD_NOT_DO_GRADIENT(Adam);
114 SHOULD_NOT_DO_GRADIENT(SparseAdam);
115 SHOULD_NOT_DO_GRADIENT(RowWiseSparseAdam);
116 } // namespace caffe2
A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...
Definition: blob.h:13