|
def | __init__ (self, name, input_feature_schema, trainer_extra_schema, keep_blobs=False) |
|
def | clear_output_schema (self) |
|
def | set_initialize_params (self, initialize_params) |
|
def | add_metric_field (self, name, value) |
|
def | add_ad_hoc_plot_blob (self, blob, dtype=None) |
|
def | add_global_constant (self, name, array=None, dtype=None, initializer=None) |
|
def | maybe_add_global_constant (self, name, args, kwargs) |
|
def | create_init_net (self, name) |
|
def | create_param (self, param_name, shape, initializer, optimizer=None, ps_param=None, regularizer=None) |
|
def | next_layer_name (self, prefix) |
|
def | add_layer (self, layer) |
|
def | get_parameter_blobs (self) |
|
def | add_post_grad_net_modifiers (self, modifier) |
|
def | add_final_net_modifiers (self, modifier) |
|
def | seed (self) |
|
def | sequence_seed (self) |
|
def | store_seed (self, seed, sequence_seed=True) |
|
def | apply_seed (self, net) |
|
def | default_optimizer (self) |
|
def | default_optimizer (self, optimizer) |
|
def | input_feature_schema (self) |
|
def | trainer_extra_schema (self) |
|
def | metrics_schema (self) |
|
def | output_schema (self) |
|
def | output_schema (self, schema) |
|
def | preproc_output_schema (self) |
|
def | preproc_output_schema (self, schema) |
|
def | prediction (self) |
|
def | add_prediction (self, prediction, weight=1.0) |
|
def | loss (self) |
|
def | loss (self, loss) |
|
def | has_loss (self) |
|
def | add_loss (self, loss, name='unnamed') |
|
def | add_output_schema (self, name, value) |
|
def | add_trainer_extra_schema (self, trainer_extra_schema) |
|
def | __getattr__ (self, layer) |
|
def | layers (self) |
|
def | apply_regularizers_on_loss (self, train_net, train_init_net, blob_to_device=None) |
|
def | apply_regularizers_after_optimizer (self, train_net, train_init_net, grad_map, blob_to_device=None) |
|
def | apply_post_grad_net_modifiers (self, trainer_net, trainer_init_net, grad_map, blob_to_device=None, modify_output_record=False) |
|
def | apply_final_net_modifiers (self, trainer_net, trainer_init_net, grad_map, blob_to_device=None, modify_output_record=False) |
|
def | apply_optimizers (self, train_net, train_init_net, grad_map, blob_to_device=None) |
|
def | NoOptim (self, args, kwargs) |
|
def | breakdown_map (self) |
|
def | breakdown_map (self, breakdown_map) |
|
def | __init__ (self, name=None, init_params=True, allow_not_known_ops=True, skip_sparse_optim=False, param_model=None, arg_scope=None) |
|
def | arg_scope (self) |
|
def | get_name (self) |
|
def | create_param (self, param_name, shape, initializer, tags=None) |
|
def | get_param_info (self, param) |
|
def | add_param_DEPRECATED (self, param, key=None, shape=None, length=None) |
|
def | AddParameter (self, param, tags=None) |
|
def | GetParams (self, namescope=None, top_scope=False) |
|
def | Proto (self) |
|
def | InitProto (self) |
|
def | RunAllOnGPU (self, args, kwargs) |
|
def | CreateDB (self, blob_out, db, db_type, kwargs) |
|
def | AddGradientOperators (self, args, kwargs) |
|
def | get_param_to_grad (self, params) |
|
def | GetOptimizationParamInfo (self, params=None) |
|
def | Validate (self) |
|
def | GetComputedParams (self, namescope=None) |
|
def | GetAllParams (self, namescope=None) |
|
def | TensorProtosDBInput (self, unused_blob_in, blob_out, batch_size, db, db_type, kwargs) |
|
def | GetDevices (self) |
|
def | __getattr__ (self, op_type) |
|
def | __dir__ (self) |
|
def | GetCompleteNet (self) |
|
def | ConstructInitTrainNetfromNet (self, net) |
|
Model helper for building models on top of layers abstractions.
Each layer is the abstraction that is higher level than Operator. Layer
is responsible for ownership of it's own parameters and can easily be
instantiated in multiple nets possible with different sets of ops.
As an example: one can easily instantiate predict and train nets from
the same set of layers, where predict net will have subset of the
operators from train net.
Definition at line 30 of file layer_model_helper.py.