|
def | __init__ (self, model, input_record, output_dims, s=1, scale=1.0, weight_init=None, bias_init=None, weight_optim=None, bias_optim=None, set_weight_as_global_constant=False, initialize_output_schema=True, name='arc_cosine_feature_map', kwargs) |
|
def | add_ops (self, net) |
|
def | __init__ (self, model, prefix, input_record, predict_input_record_fields=None, tags=None, kwargs) |
|
def | get_type (self) |
|
def | predict_input_record (self) |
|
def | input_record (self) |
|
def | predict_output_schema (self) |
|
def | predict_output_schema (self, output_schema) |
|
def | output_schema (self) |
|
def | output_schema (self, output_schema) |
|
def | get_parameters (self) |
|
def | get_fp16_compatible_parameters (self) |
|
def | get_memory_usage (self) |
|
def | add_init_params (self, init_net) |
|
def | create_param (self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None) |
|
def | get_next_blob_reference (self, name) |
|
def | add_operators (self, net, init_net=None, context=InstantiationContext.TRAINING) |
|
def | add_ops (self, net) |
|
def | add_eval_ops (self, net) |
|
def | add_train_ops (self, net) |
|
def | add_ops_to_accumulate_pred (self, net) |
|
def | add_param_copy_operators (self, net) |
|
def | export_output_for_metrics (self) |
|
def | export_params_for_metrics (self) |
|
A general version of the arc-cosine kernel feature map (s = 1 restores
the original arc-cosine kernel feature map).
Applies H(x) * x^s, where H is the Heaviside step function and x is the
input after applying FC (such that x = w * x_orig + b).
For more information, see the original paper:
http://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf
Inputs :
output_dims -- dimensions of the output vector
s -- degree to raise transformed features
scale -- amount to scale the standard deviation
weight_init -- initialization distribution for weight parameter
bias_init -- initialization distribution for bias pararmeter
weight_optim -- optimizer for weight params; None for random features
bias_optim -- optimizer for bias param; None for random features
set_weight_as_global_constant -- if True, initialized random parameters
will be constant across all distributed
instances of the layer
initialize_output_schema -- if True, initialize output schema as Scalar
from Arc Cosine; else output schema is None
Definition at line 11 of file arc_cosine_feature_map.py.