__call__(self, net, init_net=None, grad_map=None, blob_to_device=None, modify_output_record=False) (defined in caffe2.python.modeling.net_modifier.NetModifier) | caffe2.python.modeling.net_modifier.NetModifier | |
__init__(self, grad_clip_method, clip_norm_type='l2_norm', clip_threshold=0.1, use_parameter_norm=False, compute_norm_ratio=False, clip_max=1, clip_min=-1, blobs_to_include=None, blobs_to_exclude=None) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
__init__(self) (defined in caffe2.python.modeling.net_modifier.NetModifier) | caffe2.python.modeling.net_modifier.NetModifier | |
blobs_to_exclude (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
blobs_to_include (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
BY_NORM (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
BY_VALUE (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
CLIP_GRADIENT_NORM_TYPES (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
clip_max (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
clip_min (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
clip_norm_type (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
clip_threshold (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
compute_norm_ratio (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
grad_clip_method (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
GRAD_CLIP_METHODS (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
L1_NORM (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
L2_NORM (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | static |
modify_net(self, net, init_net=None, grad_map=None, blob_to_device=None, modify_output_record=False) (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |
modify_net(self, net, init_net=None, grad_map=None, blob_to_device=None) (defined in caffe2.python.modeling.net_modifier.NetModifier) | caffe2.python.modeling.net_modifier.NetModifier | |
use_parameter_norm (defined in caffe2.python.modeling.gradient_clipping.GradientClipping) | caffe2.python.modeling.gradient_clipping.GradientClipping | |