|
def | __init__ (self, encoder_output_dim, encoder_outputs, encoder_lengths, decoder_cell, decoder_state_dim, attention_type, weighted_encoder_outputs, attention_memory_optimization, kwargs) |
|
def | get_attention_weights (self) |
|
def | prepare_input (self, model, input_blob) |
|
def | build_initial_coverage (self, model) |
|
def | get_state_names (self) |
|
def | get_output_dim (self) |
|
def | get_output_state_index (self) |
|
def | __init__ (self, name=None, forward_only=False, initializer=None) |
|
def | initializer (self) |
|
def | initializer (self, value) |
|
def | scope (self, name) |
|
def | apply_over_sequence (self, model, inputs, seq_lengths=None, initial_states=None, outputs_with_grads=None) |
|
def | apply (self, model, input_t, seq_lengths, states, timestep) |
|
def | apply_override (self, model, input_t, seq_lengths, timestep, extra_inputs=None) |
|
def | prepare_input (self, model, input_blob) |
|
def | get_output_state_index (self) |
|
def | get_state_names (self) |
|
def | get_state_names_override (self) |
|
def | get_output_dim (self) |
|
|
| encoder_output_dim |
|
| encoder_outputs |
|
| encoder_lengths |
|
| decoder_cell |
|
| decoder_state_dim |
|
| weighted_encoder_outputs |
|
| encoder_outputs_transposed |
|
| attention_type |
|
| attention_memory_optimization |
|
| hidden_t_intermediate |
|
| coverage_weights |
|
| name |
|
| recompute_blobs |
|
| forward_only |
|
Definition at line 1109 of file rnn_cell.py.
def caffe2.python.rnn_cell.AttentionCell.build_initial_coverage |
( |
|
self, |
|
|
|
model |
|
) |
| |
initial_coverage is always zeros of shape [encoder_length],
which shape must be determined programmatically dureing network
computation.
This method also sets self.coverage_weights, a separate transform
of encoder_outputs which is used to determine coverage contribution
tp attention.
Definition at line 1288 of file rnn_cell.py.
The documentation for this class was generated from the following file: