Caffe2 - Python API
A deep learning, cross platform ML framework
Public Member Functions | List of all members
torch.distributions.constraints.Constraint Class Reference
Inheritance diagram for torch.distributions.constraints.Constraint:
torch.distributions.constraints._Boolean torch.distributions.constraints._Dependent torch.distributions.constraints._GreaterThan torch.distributions.constraints._GreaterThanEq torch.distributions.constraints._HalfOpenInterval torch.distributions.constraints._IntegerGreaterThan torch.distributions.constraints._IntegerInterval torch.distributions.constraints._IntegerLessThan torch.distributions.constraints._Interval torch.distributions.constraints._LessThan torch.distributions.constraints._LowerCholesky torch.distributions.constraints._LowerTriangular torch.distributions.constraints._PositiveDefinite torch.distributions.constraints._Real torch.distributions.constraints._RealVector torch.distributions.constraints._Simplex

Public Member Functions

def check (self, value)
 
def __repr__ (self)
 

Detailed Description

Abstract base class for constraints.

A constraint object represents a region over which a variable is valid,
e.g. within which a variable can be optimized.

Definition at line 48 of file constraints.py.

Member Function Documentation

def torch.distributions.constraints.Constraint.check (   self,
  value 
)
Returns a byte tensor of `sample_shape + batch_shape` indicating
whether each event in value satisfies this constraint.

Definition at line 55 of file constraints.py.


The documentation for this class was generated from the following file: