Implements Averaged Stochastic Gradient Descent.
It has been proposed in `Acceleration of stochastic approximation by
averaging`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
lambd (float, optional): decay term (default: 1e-4)
alpha (float, optional): power for eta update (default: 0.75)
t0 (float, optional): point at which to start averaging (default: 1e6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
.. _Acceleration of stochastic approximation by averaging:
http://dl.acm.org/citation.cfm?id=131098
Definition at line 6 of file asgd.py.