Public Member Functions | |
def | __init__ (self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False) |
def | __setstate__ (self, state) |
def | step (self, closure=None) |
Implements RMSprop algorithm. Proposed by G. Hinton in his `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. The centered version first appears in `Generating Sequences With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) momentum (float, optional): momentum factor (default: 0) alpha (float, optional): smoothing constant (default: 0.99) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) centered (bool, optional) : if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
Definition at line 5 of file rmsprop.py.
def torch.optim.rmsprop.RMSprop.step | ( | self, | |
closure = None |
|||
) |
Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss.
Definition at line 49 of file rmsprop.py.