Public Member Functions | |
def | __init__ (self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)) |
def | step (self, closure=None) |
Implements the resilient backpropagation algorithm. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that are multiplicative increase and decrease factors (default: (0.5, 1.2)) step_sizes (Tuple[float, float], optional): a pair of minimal and maximal allowed step sizes (default: (1e-6, 50))
def torch.optim.rprop.Rprop.step | ( | self, | |
closure = None |
|||
) |