17 #include "softmax_focal_loss_op.h"    18 #include "caffe2/operators/softmax_shared.h"    22 REGISTER_CPU_OPERATOR(SoftmaxFocalLoss, SoftmaxFocalLossOp<float, CPUContext>);
    23 REGISTER_CPU_OPERATOR(
    24     SoftmaxFocalLossGradient,
    25     SoftmaxFocalLossGradientOp<float, CPUContext>);
    27 OPERATOR_SCHEMA(SoftmaxFocalLoss)
    31 A multiclass form of Focal Loss designed for use in RetinaNet-like models.    32 The input is assumed to be unnormalized scores (sometimes called 'logits')    33 arranged in a 4D tensor with shape (N, C, H, W), where N is the number of    34 elements in the batch, H and W are the height and width, and C = num_anchors *    35 num_classes. The softmax is applied num_anchors times along the C axis.    37 The softmax version of focal loss is:    39   FL(p_t) = -alpha * (1 - p_t)**gamma * log(p_t),    41 where p_i = exp(s_i) / sum_j exp(s_j), t is the target (ground truth) class, and    42 s_j is the unnormalized score for class j.    44 See: https://arxiv.org/abs/1708.02002 for details.    48         "(float) default 1.0; multiply the loss by this scale factor.")
    51         "(float) default 0.25; Focal Loss's alpha hyper-parameter.")
    54         "(float) default 1.0; Focal Loss's gamma hyper-parameter.")
    57         "(int) default 81; number of classes in each softmax group.")
    61         "4D tensor of softmax inputs (called 'scores' or 'logits') with shape "    62         "(N, C, H, W), where C = num_anchors * num_classes defines num_anchors "    63         "groups of contiguous num_classes softmax inputs.")
    67         "4D tensor of labels with shape (N, num_anchors, H, W). Each entry is "    68         "a class label in [0, num_classes - 1] (inclusive).")
    72         "Scalar; the loss is normalized by 1 / max(1, normalizer)."    81         "4D tensor of softmax probabilities with shape (N, C, H, W), where "    82         "C = num_anchors * num_classes, and softmax was applied to each of the "    83         "num_anchors groups; within a group the num_classes values sum to 1.");
    85 OPERATOR_SCHEMA(SoftmaxFocalLossGradient)
    91         "See SoftmaxFocalLoss.")
    95         "See SoftmaxFocalLoss.")
    99         "See SoftmaxFocalLoss.")
   103         "Output 1 from SoftmaxFocalLoss; See SoftmaxFocalLoss.")
   107         "Gradient of forward output 0 (loss)")
   111         "Gradient of forward input 0 (scores)");
   114   using GradientMakerBase::GradientMakerBase;
   115   vector<OperatorDef> GetGradientDefs()
 override {
   117         "SoftmaxFocalLossGradient",
   119         vector<string>{I(0), I(1), I(2), O(1), GO(0)},
   120         vector<string>{GI(0)});
 
A global dictionary that holds information about what Caffe2 modules have been loaded in the current ...
 
static vector< OperatorDef > SingleGradientDef(const Args &...args)
a helper function to allow one to create one single operator def, which is usually the case for many ...