|
|
def | __init__ (self) |
| |
|
def | __call__ (self, net, param_init_net, param, grad=None) |
| |
|
def | get_cpu_blob_name (self, base_str, node_name='') |
| |
|
def | get_gpu_blob_name (self, base_str, gpu_id, node_name) |
| |
| def | make_unique_blob_name (self, base_str) |
| |
|
def | build_lr (self, net, param_init_net, base_learning_rate, learning_rate_blob=None, policy="fixed", iter_val=0, kwargs) |
| |
| def | add_lr_multiplier (self, lr_multiplier) |
| |
| def | get_auxiliary_parameters (self) |
| |
|
def | scale_learning_rate (self, args, kwargs) |
| |
|
def | create_lars_inputs (self, param_init_net, weight_decay, trust, lr_max) |
| |
|
|
def | dedup (net, sparse_dedup_aggregator, grad) |
| |
Definition at line 30 of file optimizer.py.
| def caffe2.python.optimizer.Optimizer.add_lr_multiplier |
( |
|
self, |
|
|
|
lr_multiplier |
|
) |
| |
Set the global learning rate multiplier. If a multiplier already
existed, this will overwrite the existing multiplier. The multiplier is
used for all future calls to _run(), unless it is overwritten.
Definition at line 147 of file optimizer.py.
| def caffe2.python.optimizer.Optimizer.get_auxiliary_parameters |
( |
|
self | ) |
|
Returns a list of auxiliary parameters.
Returns:
aux_params: A namedtuple, AuxParams.
aux_params.local stores a list of blobs. Each blob is a local
auxiliary parameter. A local auxiliary parameter is a parameter in
parallel to a learning rate parameter. Take adagrad as an example,
the local auxiliary parameter is the squared sum parameter, because
every learning rate has a squared sum associated with it.
aux_params.shared also stores a list of blobs. Each blob is a shared
auxiliary parameter. A shared auxiliary parameter is a parameter
that is shared across all the learning rate parameters. Take adam as
an example, the iteration parameter is a shared parameter, because
all the learning rates share the same iteration parameter.
Definition at line 181 of file optimizer.py.
| def caffe2.python.optimizer.Optimizer.make_unique_blob_name |
( |
|
self, |
|
|
|
base_str |
|
) |
| |
Returns a blob name that will be unique to the current device
and optimizer instance.
Definition at line 75 of file optimizer.py.
The documentation for this class was generated from the following file: