|
def | __init__ (self, alpha=0.01, epsilon=1e-4, decay=0.95, policy="fixed", sparse_dedup_aggregator=None, engine='', kwargs) |
|
def | scale_learning_rate (self, scale) |
|
def | __init__ (self) |
|
def | __call__ (self, net, param_init_net, param, grad=None) |
|
def | get_cpu_blob_name (self, base_str, node_name='') |
|
def | get_gpu_blob_name (self, base_str, gpu_id, node_name) |
|
def | make_unique_blob_name (self, base_str) |
|
def | build_lr (self, net, param_init_net, base_learning_rate, learning_rate_blob=None, policy="fixed", iter_val=0, kwargs) |
|
def | add_lr_multiplier (self, lr_multiplier) |
|
def | get_auxiliary_parameters (self) |
|
def | scale_learning_rate (self, args, kwargs) |
|
def | create_lars_inputs (self, param_init_net, weight_decay, trust, lr_max) |
|
|
| alpha |
|
| epsilon |
|
| decay |
|
| policy |
|
| sparse_dedup_aggregator |
|
| engine |
|
| init_kwargs |
|
|
def | dedup (net, sparse_dedup_aggregator, grad) |
|
Definition at line 738 of file optimizer.py.
def caffe2.python.optimizer.AdadeltaOptimizer.__init__ |
( |
|
self, |
|
|
|
alpha = 0.01 , |
|
|
|
epsilon = 1e-4 , |
|
|
|
decay = 0.95 , |
|
|
|
policy = "fixed" , |
|
|
|
sparse_dedup_aggregator = None , |
|
|
|
engine = '' , |
|
|
|
kwargs |
|
) |
| |
Constructor function to add Adadelta Optimizer
Args:
alpha: learning rate
epsilon: attribute of Adadelta to avoid numerical issues
decay: attribute of Adadelta to decay the squared gradient sum
policy: specifies how learning rate should be applied, options are
"fixed", "step", "exp", etc.
sparse_dedup_aggregator: specifies deduplication strategy for
gradient slices. Works while using sparse gradients. Options
include "mean" and "sum".
engine: the engine used, options include "", "CUDNN", etc.
Definition at line 740 of file optimizer.py.
The documentation for this class was generated from the following file: